Think of science classrooms that you have been in lately...

What are some learning characteristics of those science classrooms?
Examining the 5 Innovations
April 26, 2018

Patricia Carden, Math Specialist
Shafiq Chaudhary, Math & Science Specialist
Goals

➢ To explain the 5 innovations in NM STEM Ready! science standards.

➢ To recognize the characteristics of good instruction aligned to the NM STEM Ready! science standards.
NM STEM Ready! Science Standards

NGSS + New Mexico 6 Specific Standards = science standards

Together, the NGSS in their entirety, plus the New Mexico 6 specific standards comprise the NM STEM Ready! science standards.
What is a NM STEM Ready! science standard?

Students who demonstrate understanding can:

3-PS2-1. Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. (Clarification Statement: Examples could include an unbalanced force on one side of a ball can make it start moving and, balanced forces pushing on a box from both sides will not produce any motion at all.) [Assessment Boundary: Assessment is limited to one variable at a time: number, size, or direction of forces. Assessment does not include quantitative force size, only qualitative and relative. Assessment is limited to gravity being addressed as a force that pulls objects down.]

The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education.

<table>
<thead>
<tr>
<th>Planning and Carrying Out Investigations</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
</table>
| Planning and carrying out investigations to answer questions or test solutions to problems in 3-5 builds on K-2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions. | PS2.A: Forces and Motion
- Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object's speed or direction of motion. | Cause and Effect
- Cause and effect relationships are routinely identified. |
| - Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. |
| Scientific Investigations Use a Variety of Methods
- Science investigations use a variety of methods, tools, and techniques. |

Connections to Nature of Science

Connections to other DCIs in third grade: N/A

Articulation of DCIs across grade-levels:

Common Core State Standards Connections:

ELA/Literacy -
- RI.3.1 Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-PS2-1)
- W.3.7 Conduct short research projects that build knowledge about a topic. (3-PS2-1)
- W.3.8 Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. (3-PS2-1)

Mathematics -
- MP.2 Reason abstractly and quantitatively. (3-PS2-1)
- MP.5 Use appropriate tools strategically (3-PS2-1)
- 3.MD.A.2 Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (3-PS2-1)
What is a NM STEM Ready! science standard?

[Image of a page from a textbook or a document with a table and text related to science education standards.]

Christopher N. Ruszkowski
Secretary of Education
What makes the NM STEM Ready! science standards new and different?

Years of NGSS implementation across the country have refined our collective understanding of what is unique about the NGSS. These differences represent the 5 innovations in science teaching and learning.
Five Innovations

Build on the shifts described in the NGSS Appendix A: Conceptual Shifts, using lessons learned by educators and researchers
Five Innovations in Classroom Instruction

1. Explaining phenomena and designing solutions to problems
2. Three-dimensional learning
3. Building K-12 learning progressions
4. Connecting the NGSS to ELA/language arts and mathematics
5. All standards, all students (Equity)
Innovation 1: Explaining phenomena and designing solutions to problems

<table>
<thead>
<tr>
<th>More of</th>
<th>Less of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Making sense of phenomena and/or designing solutions to problems drives student learning of science and engineering practices (SEP), disciplinary core ideas (DCI), and crosscutting concepts so that important science facts are learned in context.</td>
<td>Acquiring disconnected science facts as the only goal for students and teachers.</td>
</tr>
</tbody>
</table>
Innovation 2:
Three-dimensional learning

<table>
<thead>
<tr>
<th>More of</th>
<th>Less of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students learn science by directly engaging in practices that scientists and engineers do including making connections with in and across science disciplines.</td>
<td>Students learn skills of science and the content of science through lecture, reading about topics and intermittent labs that confirm lecture or readings.</td>
</tr>
</tbody>
</table>
Reflection

How will these innovations benefit student learning in science classrooms?
Innovation 3: Building K-12 progressions

<table>
<thead>
<tr>
<th>More of</th>
<th>Less of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging all students (K-12) in learning experiences that connect engineering design and the nature of science with the three dimensions of the NM STEM Ready! science standards; not separated from science DCIs.</td>
<td>Presenting engineering design and the nature of science disconnected from other science learning.</td>
</tr>
</tbody>
</table>
Innovation 4: Connection to Common Core ELA and Mathematics

<table>
<thead>
<tr>
<th>More of</th>
<th>Less of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear connections to and alignment with Common Core State Standards for English language Arts and Mathematics.</td>
<td>No clear connections to other subjects</td>
</tr>
</tbody>
</table>
Innovation 5:

All standards, all students

<table>
<thead>
<tr>
<th>More of</th>
<th>Less of</th>
</tr>
</thead>
<tbody>
<tr>
<td>The NM STEM Ready! science standards highlight important learning for all students at all grades K-12.</td>
<td>Science, especially advanced topics, is only for those interested in STEM careers. Science opportunities are inconsistent for all K-12 students.</td>
</tr>
</tbody>
</table>
Reflection

How will these innovations benefit student learning across the district?
What does a NM STEM Ready! science classroom look like?

- https://www.youtube.com/watch?v=SindJsZn34g
Resources

1. Math and Science Bureau webpage
2. Guide to Implementing the NGSS
3. Framework for Leading Implementation
4. STEM Teaching Tools: Practice Brief 51
Upcoming Professional Learning

For teachers:

• **STEM Symposium (June 1, 2018)**
• **Making Sense of Science (June 11-22, 2018)**

For educational leaders:

• Leadership training about the NM STEM Ready! science standards (May 31, 2018)
Contact Information

Math and Science Bureau
Yanira Vazquez, Director
505–827–6555
yanira.vazquez@state.nm.us

Marcia Barton, STEM Specialist
505–827–6918
marcia.barton@state.nm.us

Patricia Carden, Math Specialist
505–827–7803
patricia.carden@state.nm.us

Shafiq Chaudhary, Math and Science Specialist
505–827–6511
shafiq.chaudhary@state.nm.us
Final Reflection

What are the characteristics of a NM STEM Ready! science classroom?
References

- https://www.nextgenscience.org/parentguides