

F.9 Integrated Science I - Grades 6-8

Public Education Department

PROVIDER/PUBLISHER / MATERIAL INFORMATION (TO BE COMPLETED BY PROVIDER/PUBLISHER)

Provider/Publisher / Imprint:	Grade(s):	
Title of Student Edition:	Student Edition ISBN:	
Title of Teacher Edition:	Teacher Edition ISBN:	
Title of SE Workbook:	SE Workbook ISBN:	

PUBLISHER	PUBLISHER CITATION VIDEO: Must be viewed before starting the review of this set of materials.								
Citation Video Link:	Citation Video Link:								
Citation vineo certification.	Ditation video certification: I certify that I have viewed the citation video for this specific publisher and set of materials.								
Digital Material Log In (if applicable):		Username:	Password:						

		ds Review: Science								
PE: Pe DCl: D SEP: S CONN NM: NI CCSS: PUBLIS Publis The revi teams. For thic concis o The m A scool	rformance E isciplinary C Science and Connectior M STEM Re Common C HER/PROV Her/Provider ew set subm If the review is section, th her/Provider e and shoul Column D: The cited m laterial will b re for the PE	ore Idea Engineering Practices	acing core material). The c ti is cited on the Form F. If th ad submitted for review by th N, and NM standard in Colun andard have been met. Each facing core material). Each e PE under which they fall. andard within each PE as "M M Standards within the PE.	ited Teache e review se e review te nn D. Each citation sho	er Edition should correspond with et is an online platform only, then ams. citation should direct the review ould cover no more than 3 page ould direct the reviewer to a spec	that is what should be cited wer to a specific location in the s within the materials. <i>Any c</i> ific location in the materials th	on the Form e materials t ells grayed nat best me	F and submitted for review by t hat best meets the standard. Th out do not require a citation. ets the standard.	he review	
	Criteria Standard Identifier F.9 Integrated Science I Grades 6-8 Standards Review: Publisher/Provider Citation from Teacher Edition Score If Scored D: Reviewer's Evidence for Publisher Citation Reviewer Citation from Student Edition/Workbook Score Required: Reviewer's Evidence Comments, other citations, notes									
Light W	aves, Partic	cles, Temperature, States of Matter, Thermal Energy Transfer							•	
1	PE	MS-PS4-2. Students who demonstrate understanding can: Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.								
2	DCI	PS4.A: Wave Properties A sound wave needs a medium through which it is transmitted. (MS-PS4-2)								
3	DCI	 PS4.B: Electromagnetic Radiation When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object's material and the frequency (color) of the light. (MS-PS4-2) 								
4	DCI	 PS4.B: Electromagnetic Radiation The path that light travels can be traced as straight lines, except at surfaces between different transparent materials (e.g., air and water, air and glass) where the light path bends. (MS-PS4-2) 								
5	DCI	 PS4.B: Electromagnetic Radiation A wave model of light is useful for explaining brightness, color, and the frequency-dependent bending of light at a surface between media. (MS-PS4-2) 								
6	DCI	PS4.B: Electromagnetic Radiation • However, because light can travel through space, it cannot be a matter wave, like sound or water waves. (MS-PS4-2)								
7	SEP	Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. • Develop and use a model to describe phenomena. (MS-PS4-2)								
8		Structure and Function Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used. (MS-PS4-2)								
9	PE	MS-PS1-4. Students who demonstrate understanding can: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.								
10	DCI	PS1.A: Structure and Properties of Matter • Gases and liquids are made of molecules or inert atoms that are moving about relative to each other. (MS-PS1-4)								

				 	-	
11	DCI	PS1.A: Structure and Properties of Matter • In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide. In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations. (MS-PS1-4)				
12	DCI	PS1.A: Structure and Properties of Matter • The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of matter. (MS-PS1.4)				
13	DCI	 PS3.A: Definitions of Energy The term "heat" as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance) and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to the energy transferred due to the temperature difference between two objects. (secondary to MS-PS1-4) 				
14	DCI	 PS3.A: Definitions of Energy The temperature of a system is proportional to the average internal kinetic energy and potential energy per atom or molecule (whichever is the appropriate building block for the system's material). The details of that relationship depend on the type of atom or molecule and the interactions among the atoms in the material. Temperature is not a direct measure of a system's total thermal energy. The total thermal energy (sometimes called the total internal energy) of a system depends jointly on the temperature, the total number of atoms in the system, and the state of the material. (secondary to MS-PS1-4) 				
15	SEP	Developing and Using Models Modeling in 6–8 builds on K–5 and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. • Develop a model to predict and/or describe phenomena.(MS- PS1-4)				
16	ссс	Cause and Effect • Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-PS1-4)				
17	PE	MS-PS3-3. Students who demonstrate understanding can: Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.				
18	DCI	 PS3.A: Definitions of Energy Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. 				
19	DCI	 PS3.B: Conservation of Energy and Energy Transfer Energy is spontaneously transferred out of hotter regions or objects and into colder ones. 				
20		ETS1.A: Defining and Delimiting an Engineering Problem • The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that is likely to limit possible solutions.				
21		 ETS1.B: Developing Possible Solutions A solution needs to be tested, and then modified on the basis of the test results in order to improve it. There are systematic processes for evaluating solutions with respect to how well they meet criteria and constraints of a problem. 				

			-		·		
		Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 6–8 builds on					
		K–5 experiences and progresses to include constructing					
22	SEP	explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and					
		 theories. Apply scientific ideas or principles to design, construct, and test a 					
		design of an object, tool, process or system.					
23	ccc	Energy and Matter • The transfer of energy can be tracked as energy flows through a					
		designed or natural system.					
		MS-PS3-4. Students who demonstrate understanding can: Plan an investigation to determine the relationships among					
24	PE	the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as					
		measured by the temperature of the sample.					
		PS3.A: Definitions of Energy Temperature is a measure of the average kinetic energy of 					
25	DCI	particles of matter. The relationship between the temperature and					
		the total energy of a system depends on the types, states, and amounts of matter present.					
		PS3.B: Conservation of Energy and Energy Transfer • The amount of energy transfer needed to change the					
26	DCI	temperature of a matter sample by a given amount depends on the					
		nature of the matter, the size of the sample, and the environment. Planning and Carrying Out Investigations					
		Planning and carrying out investigations to answer questions or					
		test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and					
27	SEP	 provide evidence to support explanations or design solutions. Plan an investigation individually and collaboratively, and in the 					
		design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will					
		be recorded, and how many data are needed to support a claim.					
28	CONN	Scientific Knowledge is Based on Empirical Evidence • Science knowledge is based upon logical and conceptual					
	-	connections between evidence and explanations					
29	ссс	Scale, Proportion, and Quantity Proportional relationships (e.g. speed as the ratio of distance 					
25		traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes.					
		MS-PS3-5. Students who demonstrate understanding can:					
30	PE	Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is					
		transferred to or from the object.					
31	DCI	 PS3.B: Conservation of Energy and Energy Transfer When the motion energy of an object changes, there is inevitably 					
		some other change in energy at the same time. Engaging in Argument from Evidence					
		Engaging in argument from evidence in 6–8 builds on K–5					
32	SEP	experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions					
52		about the natural and designed worlds. Construct, use, and present oral and written arguments 					
		supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon.					
		Scientific Knowledge is Based on Empirical Evidence					
33	CONN	Science knowledge is based upon logical and conceptual connections between evidence and explanations					
		Energy and Matter					
34	ccc	 Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion). 					
	L			l	1	1	

Water C	ycling, We	eather, Climate				
35	PE	MS-ESS2-4. Students who demonstrate understanding can: Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.				
36	DCI	ESS2.C: The Roles of Water in Earth's Surface Processes • Water continually cycles among land, ocean, and atmosphere via transpiration, evaporation, condensation and crystallization, and precipitation, as well as downhill flows on land.				
37	DCI	ESS2.C: The Roles of Water in Earth's Surface Processes • Global movements of water and its changes in form are propelled by sunlight and gravity.				
38	SEP	Developing and Using Models Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. • Develop a model to describe unobservable mechanisms.				
39	ссс	Energy and Matter • Within a natural or designed system, the transfer of energy drives the motion and/or cycling of matter.				
40	PE	MS-ESS2-5. Students who demonstrate understanding can: Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions.				
41	DCI	ESS2.C: The Roles of Water in Earth's Surface Processes • The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns.				
42	DCI	ESS2.D: Weather and Climate • Because these patterns are so complex, weather can only be predicted probabilistically.				
43	SEP	 Planning and Carrying Out Investigations Planning and carrying out investigations in 6-8 builds on K-5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or solutions. Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of conditions. 				
44	ссс	Cause and Effect • Cause and effect relationships may be used to predict phenomena in natural or designed systems.				
45	PE	MS-ESS2-6. Students who demonstrate understanding can: Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.				
46	DCI	ESS2.C: The Roles of Water in Earth's Surface Processes • Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents.				
47	DCI	ESS2.D: Weather and Climate • Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns.				
48	DCI	ESS2.D: Weather and Climate • The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents.				

·					i	
49	SEP	Developing and Using Models Modeling in 6-8 builds on K-5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. • Develop and use a model to describe phenomena.				
50	ссс	Systems and System Models Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems. 				
Rock Cy	cling, Plat	e Tectonics				
51	PE	MS-ESS2-1.Students who demonstrate understanding can: Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process.				
52	DCI	ESS2.A: Earth's Materials and Systems • All Earth processes are the result of energy flowing and matter cycling within and among the planet's systems. This energy is derived from the sun and Earth's hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth's materials and living organisms.				
53	SEP	Developing and Using Models Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. • Develop and use a model to describe phenomena.				
54	ссс	Stability and Change • Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and processes at different scales, including the atomic scale.				
55	PE	MS-ESS2-2. Students who demonstrate understanding can: Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.				
56	DCI	ESS2.A: Earth's Materials and Systems • The planet's systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These interactions have shaped Earth's history and will determine its future.				
57	DCI	ESS2.C: The Roles of Water in Earth's Surface Processes • Water's movements—both on the land and underground—cause weathering and erosion, which change the land's surface features and create underground formations.				
58	SEP	Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. • Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments) and the assumption that theories and laws that describe nature operate today as they did in the past and will continue to do so in the future.				
59	ccc	Scale Proportion and Quantity •Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small.				
60	PE	MS-ESS2-3. Students who demonstrate understanding can: Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.				

		ESS1.C: The History of Planet Earth					
61	DCI	 Tectonic processes continually generate new ocean sea floor at ridges and destroy old sea floor at trenches. 					
		ESS2.B: Plate Tectonics and Large-Scale System Interactions • Maps of ancient land and water patterns, based on investigations					
62	DCI	of rocks and fossils, make clear how Earth's plates have moved					
		great distances, collided, and spread apart.					
		Analyzing and Interpreting Data					
		Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing					
63	SEP	between correlation and causation, and basic statistical techniques					
		of data and error analysis.					
		Analyze and interpret data to provide evidence for phenomena.					
		Scientific Knowledge is Open to Revision in Light of New					
64	CONN	Evidence Science findings are frequently revised and/or reinterpreted					
		based on new evidence.					
		Patterns					
65	CCC	Patterns in rates of change and other numerical relationships can					
		provide information about natural systems. MS-ESS1-4. Students who demonstrate understanding can:	_				
		Construct a scientific explanation based on evidence from					
66	PE	rock strata for how the geologic time scale is used to organize					
		Earth's 4.6-billion-year-old history.			1	1	
		ESS1.C: The History of Planet Earth • The geologic time scale interpreted from rock strata provides a					
67	DCI	way to organize Earth's history. Analyses of rock strata and the					
		fossil record provide only relative dates, not an absolute scale.					
		Constructing Explanations and Designing Solutions					
		Constructing explanations and designing solutions in $6-8$ builds on $K-5$ experiences and progresses to include constructing					
		explanations and designing solutions supported by multiple					
		sources of evidence consistent with scientific ideas, principles, and					
68	SEP	 theories. Construct a scientific explanation based on valid and reliable 					
		evidence obtained from sources (including the students' own					
		experiments) and the assumption that theories and laws that					
		describe the natural world operate today as they did in the past and will continue to do so in the future.					
		Scale, Proportion, and Quantity					
69	ccc	• Time, space, and energy phenomena can be observed at various					
69		scales using models to study systems that are too large or too					
		small.					
Natural I	Hazards		_				
		MS-ESS3-2. Students who demonstrate understanding can: Analyze and interpret data on natural hazards to forecast					
70	PE	future catastrophic events and inform the development of					
		technologies to mitigate their effects.				T T	
		ESS3.B: Natural Hazards					
71	DCI	 Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the 					
		locations and likelihoods of future events.					
		Analyzing and Interpreting Data					
		Analyzing data in 6–8 builds on K–5 and progresses to extending					
72	SEP	quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data					
'-	021	and error analysis.					
		Analyze and interpret data to determine similarities and					
		differences in findings.					
73	ccc	Patterns • Graphs, charts, and images can be used to identify patterns in					
		data.					
-							

74	CONN	Influence of Science, Engineering, and Technology on Society and the Natural World • The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time.				
75	PE	MS-PS4-1. Students who demonstrate understanding can: Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.				
76	DCI	 PS4.A: Wave Properties A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude. 				
77	SEP	Using Mathematics and Computational Thinking Mathematical and computational thinking at the 6–8 level builds on K–5 and progresses to identifying patterns in large data sets and using mathematical concepts to support explanations and arguments. • Use mathematical representations to describe and/or support scientific conclusions and design solutions.				
78	CONN	Scientific Knowledge is Based on Empirical Evidence • Science knowledge is based upon logical and conceptual connections between evidence and explanations.				
79	ccc	Patterns Graphs and charts can be used to identify patterns in data. 				
Organis	m Growth,	Cells, and Systems				
80	PE	MS-LS1-1. Students who demonstrate understanding can: Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.				
81	DCI	LS1.A: Structure and Function • All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multicellular).				
82	SEP	Planning and Carrying Out Investigations Planning and carrying out investigations in 6-8 builds on K-5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or solutions. • Conduct an investigation to produce data to serve as the basis for evidence that meet the goals of an investigation.				
83	ссс	Scale, Proportion, and Quantity • Phenomena that can be observed at one scale may not be observable at another scale.				
84	CONN	Interdependence of Science, Engineering, and Technology • Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems.				
85	PE	MS-LS1-2. Students who demonstrate understanding can: Develop and use a model to describe the function of a cell as a whole and ways the parts of cells contribute to the function.	 		 	
86	DCI	LS1.A: Structure and Function • Within cells, special structures are responsible for particular functions, and the cell membrane forms the boundary that controls what enters and leaves the cell.				
87	SEP	 Developing and Using Models Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. Develop and use a model to describe phenomena. 				

88	ccc	Structure and Function • Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the relationships among its parts, therefore complex natural structures/systems can be analyzed to determine how they function.				
89	PE	MS-LS1-3. Students who demonstrate understanding can: Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.				
90	DCI	LS1.A: Structure and Function • In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions.				
91	SEP	 Engaging in Argument from Evidence Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s). Use an oral and written argument supported by evidence to support or refute an explanation or a model for a phenomenon. 				
92	ccc	Systems and System Models • Systems may interact with other systems; they may have sub- systems and be a part of larger complex systems.				
93	CONN	Science is a Human Endeavor • Scientists and engineers are guided by habits of mind such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.				
94	PE	MS-LS1-8. Students who demonstrate understanding can: Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.				
95	DCI	LS1.D: Information Processing • Each sense receptor responds to different inputs (electromagnetic, mechanical, chemical), transmitting them as signals that travel along nerve cells to the brain. The signals are then processed in the brain, resulting in immediate behaviors or memories.				
96	SEP	Obtaining, Evaluating, and Communicating Information Obtaining, evaluating, and communicating information in 6-8 builds on K-5 experiences and progresses to evaluating the merit and validity of ideas and methods. • Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence.				
97	ссс	Cause and Effect • Cause and effect relationships may be used to predict phenomena in natural systems.				
Enginee	ring Desig	n:				
98	PE	MS-ETS1-1. Students who demonstrate understanding can: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.				
99	DCI	ETS1.A: Defining and Delimiting Engineering Problems • The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions. (MS-ETS1-1)				

100	SEP	Asking Questions and Defining Problems Asking questions and defining problems in grades 6–8 builds on grades K–5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models. • Define a design problem that can be solved through the development of an object, tool, process or system and includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions. (MS-ETS1-1)				
101	ccc	Influence of Science, Engineering, and Technology on Society and the Natural World • All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. (MS- ETS1-1)				
102	ccc	Influence of Science, Engineering, and Technology on Society and the Natural World • The uses of technologies and limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. (MS-ETS1-1)				
103	PE	MS-ETS1-2. Students who demonstrate understanding can: Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.				
104	DCI	 ETS1.B: Developing Possible Solutions There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. (MS-ETS1-2) 				
105	SEP	Engaging in Argument from Evidence Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world. • Evaluate competing design solutions based on jointly developed and agreed-upon design criteria. (MS-ETS1-2)				
106	PE	MS-ETS1-3. Students who demonstrate understanding can: Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solutions to better meet the criteria for success.				
107	DCI	ETS1.B: Developing Possible Solutions • There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. (MS-ETS1-3)				
108	DCI	ETS1.B: Developing Possible Solutions • Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors. (MS- ETS1-3)				
109	DCI	ETS1.C: Optimizing the Design Solution • Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process—that is, some of those characteristics may be incorporated into the new design. (MS-ETS1-3)				
110	SEP	 Analyzing and Interpreting Data Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis. Analyze and interpret data to determine similarities and differences in findings. (MS-ETS1-3) 				

111	PE	MS-ETS1-4. Students who demonstrate understanding can: Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.				
112		 ETS1.B: Developing Possible Solutions A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (MS-ETS1-4) 				
113	DCI	ETS1.B: Developing Possible Solutions • Models of all kinds are important for testing solutions. (MS- ETS1-4)				
114		ETS1.C: Optimizing the Design Solution • The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (MS- ETS1-4)				
115	SEP	Developing and Using Models Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems. • Develop a model to generate data to test ideas about designed systems, including those representing inputs and outputs. (MS- ETS1-4)				

	CSS for ELA/Literacy and Math in Grades 6-8 NGSS • NOTE: The standards noted at the end of each CCSS (such as (HS-ESS1-1), (HS-ESS1-2), (HS-ESS1-5)) are the occurrences of the CCSS within the NGSS.								
	rades 6-8 CCSS ELA/Literacy								
116	CCSS ELA/ Literacy	RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-PS3-5), (MS-ESS2-5), (MS-ESS2-2), (MS-ESS2-3), (MS-ESS1-4), (MS-ESS3-2), (MS-ETS1-1), (MS-LS1-3), (MS-ETS1-2), (MS-ETS1-3)							
117	CCSS ELA/ Literacy	RST.6-8.3 Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (<i>MS-PS3-3</i>), (<i>MS-PS3-4</i>)							
118	ELA/	RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-PS1-4), (MS-ESS2-3), (MS-ESS3-2), (MS-LS1-1), (MS-ETS1- 3)							
119	CCSS ELA/ Literacy	RST.6-8.9 Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-ESS2-5), (MS-ESS2-3), (MS-ETS1-2), (MS-ETS1-3)							
120	ELA/	RI.6.8 Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. (<i>MS-LS1-3</i>)							
121	CCSS ELA/ Literacy	WHST.6-8.1 Write arguments focused on discipline content. (MS-PS3-5), (MS-LS1-3)							
122		WHST.6-8.2 Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (<i>MS</i> -ESS2-2), (<i>MS</i> -ESS1-4)							

123	CCSS ELA/ Literacy	WHST.6-8.7 Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-PS3-3), (MS-ETS1-2), (MS-PS3-4)				
124	CCSS ELA/ Literacy	WHST.6-8.8 Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-ESS2-5), (MS-LS1-8), (MS-ETS1-1)				
125	CCSS ELA/ Literacy	WHST.6-8.9 Draw evidence from informational texts to support analysis, reflection, and research. (MS-ETS1-2)				
126	CCSS ELA/ Literacy	SL.8.5 Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-PS4-2), (MS-ESS2-6), (MS-ESS2-1), (MS-ESS2-2), (MS-PS4-1), (MS-LS1-2), (MS-ETS1-4)				
Grades	6-8 CCSS I	Math				
127	CCSS Math	MP.2 Reason abstractly and quantitatively. (MS-PS3-4), (MS-PS3-5, (MS-ESS2-5), (MS-ESS2-2), (MS-ESS2- 3), (MS-ESS3-2), (MS-PS4-1), (MS-ETS1-1), (MS-ETS1-2), (MS- ETS1-3), (MS-ETS1-4)				
128	CCSS Math	MP.4 Model with mathematics. (MS-PS4-1)				
129	CCSS Math	6.RP.A.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MS-PS3-5), (MS-PS4-1)				
130	CCSS Math	6.RP.A.3 Use ratio and rate reasoning to solve real-world and mathematical problems. (<i>MS-PS4-1</i>)				
131	CCSS Math	7.RP.A.2 Recognize and represent proportional relationships between quantities. (MS-PS3-5), (MS-PS4-1)				
132	CCSS Math	6.NS.C.5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (<i>MS-PS1-4</i>), (<i>MS-ESS2-5</i>)				
133	CCSS Math	6.EE.B.6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-ESS2-2), (MS-ESS2-3), (MS-ESS1-4), (MS-ESS3-2)				
134	CCSS Math	6.EE.C.9 Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent variables using graphs and tables, and relate these to the equation. (<i>MS-LS1-1</i>), (<i>MS-LS1-2</i>), (<i>MS-LS1-3</i>)				

135	CCSS Math	7.EE.B.3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3)				
136	CCSS Math	7.EE.B.4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-ESS2-2), (MS-ESS2-3), (MS-ESS1-4), (MS-ESS3-2)				
137	CCSS Math	8.F.A.3 Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. (<i>MS-PS3-5</i>), (<i>MS-PS4-1</i>)				
138	CCSS Math	6.SP.B.5 Summarize numerical data sets in relation to their context. (MS-PS3-4)				
139	CCSS Math	7.SP.7 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. (MS-ETS1-4)				

Section 2: Science Content Review PROVIDER/PUBLISHER INSTRUCTIONS: • Publisher/provider citations for this section will refer to the Teacher Edition (teacher-facing core material) and/or Student Edition/Student Workbook (student-facing core material). The cited Teacher Edition, Student Edition, and/or Student Workbook should correspond with titles and ISBNs entered on the Form F cover page, whether in print, online, or both. The review set submitted to the summer review institute should also correspond with what is cited on the Form F. If the review set is an online platform only, then that is what should be cited on the Form F and submitted for review by the review set is in print only, then that is what should be cited on the Form F and submitted for review by the review teams. • For this section, the publisher/provider will enter one citation per criterion (Column C). Each citation should direct the reviewer to a specific location in the materials that best meets the criterion. The citations should be concise and should allow the reviewer to easily determine that all components of the criterion have been met. Each citation should cover no more than 3 pages within the materials. o Column C: Enter one citation in Column C from either the Teacher Edition (teacher-facing core material) OR Student Edition/Student Workbook (student-facing core material). Each citation should direct the reviewer to a specific location in the materials that best meets the criterion. • The material will be scored for alignment with each criterion as "Meets expectations", "Partially meets expectations", or "Does not meet expectations" based on the citations provided. o NOTE: You may not use a citation more than once across ALL sections of the rubric. Criteria If Scored D: Reviewer's Evidence Grade K-12 Science Content Criteria Publisher/Provider Citation Score Reviewer Citation Score Required: Reviewer's Evidence Comments, other citations, notes for Publisher Citation FOCUS AREA 1: PHENOMENA-/PROBLEM-BASED AND THREE-DIMENSIONAL APPROACH Instructional materials are centered around high guality phenomena and/or problems and require a three dimensional approach to make sense of the phenomena or to solve the problems. Materials clearly integrate and describe the threedimensional NM STEM Ready! Standards via appropriate grade-band, interdisciplinary progressions that center 1 around the phenomena, utilizing aligned SEPs, CCCs, DCIs and the common core math and ELA standards' connections. Materials consistently support meaningful student sensemaking with the three dimensions, including 2 discourse, that is appropriate to grade band progressions, instruction and assessment. Natural and designed phenomena and/or problems that are meaningful and apparent to students drive coherent 3 lessons and activities in all three dimensions. FOCUS AREA 2: THREE-DIMENSIONAL ASSESSMENT Assessments provide tools, guidance and support for teachers to collect, interpret and act on data about student progress toward the learning goals of the 3 dimensional standards. Materials engage students in meaningful tasks as well as multiple assessment types and opportunities, across all 4 dimensions, in order to make sense of phenomena and/or design solutions to problems. Materials include opportunities for students to obtain feedback from teachers and peers as well as 5 opportunities for student self-reflection. FOCUS AREA 3: TEACHER SUPPORTS Materials include opportunities for teachers to effectively plan and utilize materials. Materials provide a comprehensive list of supplies and 6 teacher guidance needed to support instructional activities in a safe manner. Materials provide teacher guidance for the use of embedded and meaningful technology to support and 7 enhance student learning, when applicable, Materials and assessments include teacher guidance for students at, approaching, or exceeding grade level 8 expectations. Materials provide teacher guidance for interpreting student evidence of learning, monitoring student progress 9 and providing feedback to guide student learning and to modify instruction.

	FOCUS AREA 4: STUDENT CENTERED INSTRUCTION Materials are designed for each student's regular and active participation in science content.							
10	Materials provide opportunities to engage students' curiosity and participation in a way that pulls from their prior knowledge and connects their learning to relevant phenomena and problems.							
11	The flow of lessons from one unit to the next is coherent, meaningful, direct, and apparent to students.							
	AREA 5: EQUITY s are designed for all learners.			·	·			
12	Materials provide extensions and/or opportunities for all students to engage in learning grade-level/band science and engineering in greater depth.							
13	Materials and assessments are designed in an accessible manner and include multiple ways for all students to build and reflect on science knowledge; multiple ways for all students to access content (Universal Design for Learning); and multiple opportunities for student self-reflection.							

Section	2: All Content Review							
 PROVIDERS/PUBLISHERS: The All Content tab will be completed solely by the reviewers. They will score each criterion and provide evidence for their score from the material based on their overall review of the material. You will not provide any citations for this tab. The material will be scored for alignment with each criterion as "Meets expectations", "Partially meets expectations", or "Does not meet expectations". 								
Criteria #	All Content Criteria Review	Score	Required: Reviewer's Evidence from Material	Comments, citations, notes				
FOCUS AREA 1: COHERENCE Instructional materials are coherent and consistent with the New Mexico Content Standards that all students should study in order to be college- and career-ready.								
1	Instructional materials address the full content contained in the standards for all students by grade level.							
2	Instructional materials support students to show mastery of each standard.							
3	Instructional materials require students to engage at a level of maturity appropriate to the grade level under review.							
4	Instructional materials are coherent, making meaningful connections for students by linking the standards within a lesson and unit.							
	AREA 2: WELL-DESIGNED LESSONS ional materials take into account effective lesson struct	ure and pa	cing.					
5	The Teacher Edition presents learning progressions to provide an overview of the scope and sequence of skills and concepts. The design of the assignments shows a purposeful sequencing of teaching and learning expectations.							
6	Within each lesson of the instructional materials, there are clear, measurable, standards-aligned content objectives.							
7	Within each lesson of the instructional materials, there are clear, measurable language objectives tied directly to the content objectives.							
8	Instructional materials provide focused resources to support students' acquisition of both general academic vocabulary and content-specific vocabulary.							
9	The visual design of the instructional materials (whether in print or digital) maintains a consistent layout that supports student engagement with the subject.							

10	Instructional materials incorporate features that aid students and teachers in making meaning of the text.								
11	Instructional materials provide students with ongoing review and practice for the purpose of retaining previously acquired knowledge.								
Instruct	FOCUS AREA 3: RESOURCES FOR PLANNING Instructional materials provide teacher resources to support planning, learning, and understanding of the New Mexico Content Standards.								
12	Instructional materials provide a list of lessons in the Teacher Edition (in print or clearly distinguished/ accessible as a teacher's edition in digital materials), cross-referencing the standards addressed and providing an estimated instructional time for each lesson, chapter, and unit.								
13	Instructional materials support teachers with instructional strategies to help guide students' academic development.								
14	Instructional materials include a teacher edition/ teacher- facing material with useful annotations and suggestions on how to present the content in the student edition/student-facing material and in the supporting material.								
15	Instructional materials integrate opportunities for digital learning, including interactive digital components.								
Instruct	AREA 4: ASSESSMENT ional materials offer teachers a variety of assessment re ct ongoing data about student progress related to the st		nd tools						
16	Instructional materials provide a variety of assessments that measure student progress in all strands of the standards for the content under review. (Adopted New Mexico Content Standards for 2024: NM STEM Ready Science Standards)								
17	Instructional materials provide multiple formative and summative assessments, clearly defining which standards are being assessed through content and language objectives.								
18	Instructional materials provide scoring guides for assessments that are aligned with the standards they address, and that offer teachers guidance in interpreting student performance and suggestions for further instruction, differentiation, remediation and/or acceleration.								

19	Instructional materials provide appropriate assessment alternatives for English Learners, Culturally and Linguistically Diverse students, advanced students, and special needs students.			
20	Instructional materials include opportunities to assess student understanding and knowledge of the standards using technology.			
	AREA 5: EXTENSIVE SUPPORT			
Instruct	ional materials give all students extensive opportunities	s and suppor	t to explore key concepts.	
21	Instructional materials can be customized or adapted to meet the needs of different student populations.			
22	Instructional materials provide differentiated strategies and/or activities to meet the needs of students working below proficiency and those of advanced learners.			
23	Instructional materials provide appropriate linguistic support for English Learners and Culturally and Linguistically Diverse students, and accommodations and modifications for other special populations that will support their regular and active participation in learning content.			
24	Instructional materials provide strategies and resources for teachers to inform and engage parents, family members, and caregivers of all learners about the program and provide suggestions for how they can help support student progress and achievement.			
25	Instructional materials include opportunities for all students that encourage and support critical and creative thinking and effective problem-solving skills.			
	AREA 6: CULTURAL AND LINGUISTIC PERSPECTIVES ional materials represent a variety of cultural and lingui	stic perspect	tives.	
26	Instructional materials inform culturally and linguistically responsive pedagogy by affirming students' backgrounds in the materials themselves and in the student discussions.			
27	Instructional materials provide a collection of images, stories, and information, representing a broad range of demographic groups, and do not make generalizations or reinforce stereotypes.			

28	Instructional materials provide context, illustrations, and activities for students to make interdisciplinary connections and/or connections to real-life experiences and diverse cultural and linguistic backgrounds.		
	AREA 7: INCLUSION OF CULTURALLY AND LINGUISTIC ional materials highlight diversity in culture and langua		
29	Instructional materials include tools and resources to relate the content area appropriately to diversity in culture and language.		
30	Instructional materials include tools and resources that demonstrate multiple perspectives in a specific concept.		
31	Instructional materials engage students in critical reflection about their own lives and societies, including cultures past and present in New Mexico.		
32	Instructional materials address multiple ethnic descriptions, interpretations, or perspectives of events and experiences.		