

F.12 - Grade 8 Math I

PUBLISHER/PROVIDER MATERIAL INFORMATION (TO BE COMPLETED BY PUBLISHER/PROVIDER)					
Publisher/Provider Name/Imprint:		Grade(s):			
Title of Student Edition:		Student Edition ISBN:			
Title of Teacher Edition:		Teacher Edition ISBN:			
Title of SE Workbook:		SE Workbook ISBN:			

PUBLISHER/PROVIDER CITATION VIDEO: Reviewer must view video before starting the review of this set of materials.					
Citation Video Link:					
Citation video certification:	I certify that I have viewed the citation set of materials.				
Digital Material Log In: (Include ONLY if submitting digital materials as part of the review set listed above.)	Website:	Username:	Password:		

Section 1: Standards Review -- Math Content Standards PUBLISHER/PROVIDER INSTRUCTIONS:

PUBLISHER/PROVIDER INSTRUCTIONS:

• Publisher/Provider citations for this section will refer to the Teacher Edition (teacher-facing core material). The cited Teacher Edition should correspond with the title and ISBN entered on the Form F cover page, whether in print, online, or both. The review set submitted to the summer review institute should also correspond with what is cited on the Form F. If the review set is an online platform only, then that is what should be cited on the Form F and submitted for review by the review teams.

• For this section, the publisher/provider will enter one citation per math content standard in Column D. Each citation should direct the reviewer to a specific location in the materials that best meets the standard. The citations should be concise and should allow the reviewer to easily determine that all components of the standard have been met. Each citation should cover no more than 3 pages within the materials.

• Column D: Enter one citation in Column D from the Teacher Edition (teacher-facing core material). Each citation should direct the reviewer to a specific location in the materials that best meets the standard. If necessary, you may enter multiple, targeted citations in order to address standards with multiple components. Use as few citations as needed to meet the full intent of the standard. Your citations should allow the reviewer to easily determine that the full intent and all components of the standard have been met.

	hat the full inte	material will be scored for alignment with each standard as "Meets expe							
Criteria	· ·	540 C-14 0 M-14 - 5 - 1 - 5 - 1	o NOTE: You may not use a c		ore than once across ALL sec	Reviewer Citation from Student	1.		
#	Standard	F.12 Grade 8 Math I Standards Review	Teacher Edition	Score	for Publisher Citation	Edition/Workbook	Score	Required: Reviewer's Evidence	Comments, other citations, notes
		sions and Equations							
Cluster:	Analyze and s 8.EE.8	olve linear equations and pairs of simultaneous linear equations. Analyze and solve pairs of simultaneous linear equations.					_		
	0.55.0	Understand that solutions to a system of two linear equations in two		+-			+		
2	8.EE.8.a	variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.							
3	8.EE.8.b	Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3x + 2y = 5$ and $3x + 2y = 6$ have no solution because $3x + 2y$ cannot simultaneously be 5 and 6 .							
4	8.EE.8.c	Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.							
	: 8.F - Function								
Cluster:	Define, evalua	ate, and compare functions.				T	_		1
5	8.F.1	Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.							
6	8.F.2	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.							
7	8.F.3	Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A = s2$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1)$, $(2,4)$ and $(3,9)$, which are not on a straight							
Cluctor	Hea functions	line.							
8	8.F.4	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table							
9	8.F.5	of values. Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.							
	J.G - Geoine	**,							
Cluster:									
Cluster: 10		nd apply the Pythagorean Theorem. Explain a proof of the Pythagorean Theorem and its converse.							
	Understand a	nd apply the Pythagorean Theorem.							
10 11 12	8.G.6 8.G.7 8.G.8	nd apply the Pythagorean Theorem. Explain a proof of the Pythagorean Theorem and its converse. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.							
10 11 12 DOMAIN	8.G.6 8.G.7 8.G.8 8.SP - Statisti	nd apply the Pythagorean Theorem. Explain a proof of the Pythagorean Theorem and its converse. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.							
10 11 12 DOMAIN	8.G.6 8.G.7 8.G.8 8.SP - Statisti	nd apply the Pythagorean Theorem. Explain a proof of the Pythagorean Theorem and its converse. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.							
10 11 12 DOMAIN Cluster:	8.G.6 8.G.7 8.G.8 8.S.P - Statisti	In a paply the Pythagorean Theorem. Explain a proof of the Pythagorean Theorem and its converse. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. Se and Probability Itterns of association in bivariate data. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, inlear association, and nonlinear association. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.							
10 11 12 DOMAIN Cluster: 13	Understand a 8.G.6 8.G.7 8.G.8 : 8.SP - Statisti Investigate pa 8.SP.1	In a paply the Pythagorean Theorem. Explain a proof of the Pythagorean Theorem and its converse. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. It is a coordinate system. It is a coordinate system. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.							
10 11 12 DOMAIN Cluster: 13 14	Understand a 8.G.6 8.G.7 8.G.8 8.G.8: 8.SP- Statisti Investigate pa 8.SP.1 8.SP.2 8.SP.3	In a paply the Pythagorean Theorem. Explain a proof of the Pythagorean Theorem and its converse. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. It is a coordinate measurement data to investigate patterns of association between two quantities. It is a coordinate system in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a bilogy experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height. Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have assigned chores at home. Is there evidence that those who have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew on school nights and whether or not they have assigned chores at home.							
10 11 12 DOMAIN Cluster: 13 14 15	Understand a 8.G.6 8.G.7 8.G.8 8.G.8 8.S.P - Statisti Investigate pa 8.S.P.1 8.S.P.2 8.S.P.2	In a paly the Pythagorean Theorem. Explain a proof of the Pythagorean Theorem and its converse. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. It is a probability the problems of association between two quantities. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. Know that straight lines are widely used to model relationships between two quantities wariables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept for example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height. Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have a curfew on school nights and whether or not they have a curfew on school nights and whether or not they have a curfew on school nights and whether or not they have a curfew on school nights and whether or not t							
10 11 12 DOMAIN Cluster: 13 14 15 DOMAIN Cluster:	Understand a 8.G.6 8.G.7 8.G.8 8.G.8: 8.SP-Statisti Investigate pa 8.SP.1 8.SP.2 8.SP.3	In a paply the Pythagorean Theorem. Explain a proof of the Pythagorean Theorem and its converse. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. It is a coordinate system. It is a coordinate system. It is a sosciation in bivariate data. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height. Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have a surjew on school nights and whether or not they have a surjew on school nights and whether or not they have as surjew on school nights and whether or not they have as surjew on the or							
10 11 12 DOMAIN Cluster: 13 14 15	Understand a 8.G.6 8.G.7 8.G.8 8.G.8 8.S.P - Statisti Investigate pa 8.S.P.1 8.S.P.2 8.S.P.2	Explain a proof of the Pythagorean Theorem. Explain a proof of the Pythagorean Theorem and its converse. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. cs and Probability tetrens of association in bivariate data. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closseness of the data points to the line. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height. Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have a curfew on school nights and whether or not they have a curfew so tend to have chores? Intities Itaties units as a way to understand problems.							
10 11 12 DOMAIN Cluster: 13 14 15 16 DOMAIN Cluster: 17 18	Understand a 8.G.6 8.G.7 8.G.8 8.G.8: 8.SP-Statisti Investigate pa 8.SP.1 8.SP.2 8.SP.2 8.SP.2 8.SP.4 HS.N-Q Qua Reason quant N.Q.1 N.Q.2	Izablain a proof of the Pythagorean Theorem. Explain a proof of the Pythagorean Theorem and its converse. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. So and Probability Items of association in bivariate data. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that on additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height. Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table for example, collect data from students in your class on whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend							
10 11 12 DOMAIN Cluster: 13 14 15 DOMAIN Cluster: 17 18 19	Understand a 8.G.6 8.G.7 8.G.8 8.S.P. Statisti Investigate pa 8.S.P.1 8.S.P.2 8.S.P.3 8.S.P.4 8.S.P.4 Investigate pa 8.S.P.1 8.S.P.2 8.S.P.2 8.S.P.3	Lexplain a proof of the Pythagorean Theorem. Explain a proof of the Pythagorean Theorem and its converse. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. Se and Probability Itterns of association in bivariate data. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in muture plant height. Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table. Summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a surjed chores at home. Is there evidence that those who have a curfew of schole in the strain of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. Use units as							
10 11 12 DOMAIN Cluster: 13 14 15 DOMAIN Cluster: 17 18 19 DOMAIN	Understand a 8.G.6 8.G.7 8.G.8 8.G.8 8.SP-Statisti Investigate pa 8.SP.1 8.SP.2 8.SP.2 8.SP.4 1.HS.N-Q Quan Reason quant N.Q.1 N.Q.2 N.Q.3 1.HS.A-SSE See	In a papely the Pythagorean Theorem. Explain a proof of the Pythagorean Theorem and its converse. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. See and Probability tetrens of association between two quantities. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional 1.5 cm in mature plant height. Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores? Intities: Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displa							
10 11 12 DOMAIN Cluster: 13 14 15 DOMAIN Cluster: 17 18 19 DOMAIN	Understand a 8.G.6 8.G.7 8.G.8 8.G.8 8.SP-Statisti Investigate pa 8.SP.1 8.SP.2 8.SP.2 8.SP.4 1.HS.N-Q Quan Reason quant N.Q.1 N.Q.2 N.Q.3 1.HS.A-SSE See	Lexplain a proof of the Pythagorean Theorem. Explain a proof of the Pythagorean Theorem and its converse. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. Se and Probability Itterns of association in bivariate data. Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in muture plant height. Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table. Summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a surjed chores at home. Is there evidence that those who have a curfew of schole in the strain of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. Use units as							

21	A.SSE.1.a	Interpret parts of an expression, such as terms, factors, and				
	Alssellia	coefficients. Interpret complicated expressions by viewing one or more of their				
22	A.SSE.1.b	parts as a single entity. For example, interpret P(1+r)n as the product				
DOMAIN	: HS.A-CED Cre	of P and a factor not depending on P. eating Equations				
Cluster:	Create equati	ons that describe numbers or relationships.				
23	A.CED.1	Create equations and inequalities in one variable and use them to solve problems. <i>Include equations arising from linear and quadratic</i>				
		functions, and simple rational and exponential functions.				
24	A.CED.2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels				
		and scales. Represent constraints by equations or inequalities, and by systems				
25	A.CED.3	of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent				
25	A.CLD.3	inequalities describing nutritional and cost constraints on				
		combinations of different foods. Rearrange formulas to highlight a quantity of interest, using the				
26	A.CED.4	same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.				
DOMAIN	: HS.A-REI Rea	soning with equations and inequalities				
Cluster:	Understand so	olving equations as a process of reasoning and explain the reasoning.				
27	A.REI.1	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the				
	Aintii	assumption that the original equation has a solution. Construct a viable argument to justify a solution method.				
Cluster:	Solve equatio	ns and inequalities in one variable.				
28	A.REI.3	Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.				
Cluster:	Solve systems	of equations.	·			
29	A.REI.5	Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple				
		of the other produces a system with the same solutions. Solve systems of linear equations exactly and approximately (e.g.,				
30	A.REI.6	with graphs), focusing on pairs of linear equations in two variables.				
Cluster:	Represent and	I solve equations and inequalities graphically. Understand that the graph of an equation in two variables is the set				
31	A.REI.10	of all its solutions plotted in the coordinate plane, often forming a				
		curve (which could be a line). Explain why the x-coordinates of the points where the graphs of the				
		equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using				
32	A.REI.11	technology to graph the functions, make tables of values, or find				
		successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and				
		logarithmic functions. ★ Graph the solutions to a linear inequality in two variables as a half-				
33	A.REI.12	plane (excluding the boundary in the case of a strict inequality), and				
1		graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.		ı İ	1	1
		preting Functions				
Cluster:	Understand th	oreting Functions the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain				
		preting Functions te concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If is a function and x is an element of its domain, then f(x) denotes the output of f				
Cluster:	Understand th	verting Functions the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).				
Cluster:	Understand th	reting Functions te concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$. Use function notation, evaluate functions for inputs in their				
Cluster:	Understand th	reting Functions te concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If is a function and x is an element of its domain, then $f(x)$ denotes the output of corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.				
34 35	F.IF.1	reting Functions the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example,				
Cluster:	Understand th	The transfer of the domain is a subset of the interest statements that use function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of it the ange. If is a function and x is an element of its domain, then f(x) denotes the output of corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1)				
34 35 36	F.IF.2	reting Functions the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If $ s $ is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n+1) = f(n) + f(n-1)$ for $n \ge 1$.				
34 35 36	F.IF.2	reting Functions the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If $ s $ a function and x is an element of its domain, then five) denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n+1) = f(n) + f(n-1)$ for $n \ge 1$.				
34 35 36 Cluster:	F.IF.2 F.IF.3 Interpret fund	reting Functions te concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y = f(x)$. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n+1) = f(n) + f(n-1)$ for $n \ge 1$. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal				
34 35 36	F.IF.2	reting Functions the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If $ s $ a function and x is an element of its domain, then $ f $ denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n+1) = f(n) + f(n-1)$ for $n \ge 1$. It ions that arise in applications in terms of the context. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features intercepts; intervals where the function is increasing, decreasing, positive, or				
34 35 36 Cluster:	F.IF.2 F.IF.3 Interpret fund	reting Functions the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If $ s $ a function and x is an element of its domain, then $ f $ denotes the output of for corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n+1) = f(n) + f(n-1)$ for $n \ge 1$. tions that arise in applications in terms of the context. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts;				
34 35 36 Cluster:	F.IF.2 F.IF.3 Interpret fund	Detecting Functions We concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range, if f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervols where the function is increasing, decreasing, positive, or negotive, relative maximums and minimums; symmetries; end behavior; and periodicity. ★ Relate the domain of a function to its graph and, where applicable,				
34 35 36 Cluster:	F.IF.2 F.IF.3 Interpret fund	reting Functions the concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If $ s $ a function and x is an element of its domain, then fiv) denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Filonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n+1) = f(n) + f(n-1)$ for $n \ge 1$. It tons that arise in applications in terms of the context. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative, relative maximums and minimums; symmetries; end behavior, and periodicity, A Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the				
34 35 36 Cluster:	E.IF.1 E.IF.2 E.IF.3 Interpret func	The context of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If is a function and x is an element of its domain, then f(x) denotes the output of corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative, relative moximums and minimums; symmetries, end behavior, and periodicity. ★ Relate the domain of a function to its graph and, where applicable, to the quantitiative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an				
34 35 36 Cluster: 37	F.IF.2 F.IF.3 Interpret func	The transfer of the content of the content of the content of the content of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range, if f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervols where the function is increasing, decreasing, positive, or negative, relative maximums and minimums; symmetries; end behavior; and periodicity. ★ Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble negines in a factory, then the positive integers would be an appropriate domain for the function. ★				
34 35 36 Cluster:	E.IF.1 E.IF.2 E.IF.3 Interpret func	The transfer of the context of the				
34 35 36 Cluster: 37 38	F.IF.1 F.IF.2 F.IF.3 Interpret func F.IF.4 F.IF.5	vecting Functions We concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range, if f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. ★ Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function thip gives the number of person-hours it takes to assemble nengines in a factory, then the positive integers would be an appropriate domain for the function. ★ Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ★ on susing different representations.				
34 35 36 Cluster: 37 38	F.IF.1 F.IF.2 F.IF.3 Interpret func F.IF.4 F.IF.5	reting Functions te concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If is a function and x is an element of its domain, then f(x) denotes the output of corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. tions that arise in applications in terms of the context. For a function that models a relationship between two quantities, interpret key features of graphs showing key features given a verbal description of the relationship. Key features sinclude: intercepts; intervals where the function is increasing, decreasing, positive, or negotive, relative maximums and minimums; symmetries; end behavior; and periodicity. ★ Relate the domain of a function to its graph and, where applicable, to the quantitiative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ★ Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ★ cons using different representations.				
34 35 36 Cluster: 37 38 39 Cluster: 40	F.IF.1 F.IF.2 F.IF.3 Interpret func F.IF.4 F.IF.5 F.IF.6 Analyze funct F.IF.7	recting Functions The concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If is a function and x is an element of its domain, then f(x) denotes the output of corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. The final plor n ≥ 1. The a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behovior, and periodicity. ★ Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a foctory, then the positive integers would be an appropriate domain for the function. ★ Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ★ Osroph functions expressed symbolically and show key features of				
34 35 36 Cluster: 37 38 39 Cluster:	E.IF.1 E.IF.2 E.IF.3 Interpret func E.IF.4 E.IF.5 E.IF.6 Analyze funct	recting Functions te concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If is a function and x is an element of its domain, then fix) denotes the output of corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. tions that arise in applications in terms of the context. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative, relative maximums and minimums; symmetries; end behavior; and periodicity. ★ Relate the domain of a function to its graph and, where applicable, to the quantitiave relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ★ Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ★ ons using different representations. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more compilation and an animima.				
34 35 36 Cluster: 37 38 39 Cluster: 40	F.IF.1 F.IF.2 F.IF.3 Interpret func F.IF.4 F.IF.5 F.IF.6 Analyze funct F.IF.7	recting Functions te concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If is a function and x is an element of its domain, then fivy denotes the output of corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1. f(n+1) = f(n) + f(n-1) for n ≥ 1. tions that arise in applications in terms of the context. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervols where the function is increasing, decreasing, positive, or negative, relative maximums and minimums; symmetries; end behavior; and periodicity. ★ Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ★ Calculate and interpret the average rate of change of a function (presented symbolically or as table) over a specified interval. Estimate the rate of change from a graph. ★ ons using different representations. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more compication and quadratic functions and show intercepts, maxima, and minima.				
34 35 36 Cluster: 37 38 39 Cluster: 40	EIF.1 EIF.2 EIF.3 Interpret funct EIF.6 Analyze funct EIF.7 EIF.7.a	verting Functions te concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range, if f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervols where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior, and periodicity. ★ Relate the domain of a function to its graph and, where applicable, to the quantitiative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble nengines in a factory, then the positive integers would be an appropriate domain for the function. ★ Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ★ Orange filment representations. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. ★ Graph linear and quadratic functions and show intercepts, maxima, and linima.				
34 35 36 Cluster: 37 38 39 Cluster: 40 41	EIF.4 EIF.5 EIF.6 Analyze funct EIF.7 EIF.7.a EIF.7.e	reting Functions te concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If is a function and x is an element of its domain, then fix) denotes the output of corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. tions that arise in applications in terms of the context. For a function that models a relationship between two quantities, interpret key features of graphs showing key features given a verbal description of the relationship. Key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative, relative maximums and minimums; symmetries; end behavior; and periodicity. ★ Relate the domain of a function to its graph and, where applicable, to the quantitiative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ★ Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ★ ons using different representations. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. ★ Graph linear and qualificatic functions, showing intercepts, maxima, and end behavior, and trigonometric functions				
34 35 36 Cluster: 37 38 39 Cluster: 40	EIF.1 EIF.2 EIF.3 Interpret funct EIF.6 Analyze funct EIF.7 EIF.7.a	recting Functions The concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the targe) assigns to each element of the domain exactly one element of the range. If is a function and x is an element of its domain, then f(x) denotes the output of corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. Then a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervols where the function is increasing, decreasing, positive, or negative; relative maximum and minimums; symmetries; end behovior, and periodicity. ★ Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ★ Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ★ Oarson using different representations. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. ★ Graph properties of two functions each represented in a different and elabavior, and trigonometric functions, showing intercepts and end behavior, and trigonometric function				
34 35 36 Cluster: 37 38 39 Cluster: 40 41 42	EIF.5 EIF.6 Analyze funct EIF.7 EIF.7.e EIF.9	The concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range, if f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. ★ Relate the domain of a function to its graph and, where applicable, to the quantities and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ★ ons using different representations. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. ★ Graph linear and quadratic functions and show intercepts, maxima, and hinima. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing intercepts and end behavi				
34 35 36 Cluster: 37 38 39 Cluster: 40 41 42 43	E.IF.1 E.IF.2 E.IF.3 Interpret func E.IF.4 E.IF.5 E.IF.6 Analyze funct E.IF.7 E.IF.7.e E.IF.7.e	recting Functions The concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If is a function and x is an element of its domain, then f(x) denotes the output of corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. Then is a paplication in terms of the context. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervols where the function is increasing, decreasing, positive, or negotive, relative maximums and minimums; symmetries; end behovior, and periodicity. ★ Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ★ Calculate and interpret the average rate of change of a function (presented symbolically or as table) over a specified interval. Estimate the rate of change from a graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ★ Carculate and interpret the average rate of change of a functi				
34 35 36 Cluster: 37 38 39 Cluster: 40 41 42 43	E.IF.1 E.IF.2 E.IF.3 Interpret func E.IF.4 E.IF.5 E.IF.6 Analyze funct E.IF.7 E.IF.7.e E.IF.7.e	Precing Functions The concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range, if f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervols where the function is increasing, decreasing, positive, or negative, relative maximums and minimums; symmetries; end behavior; and periodicity. ★ Relate the domain of a function to its graph and, where applicable, to the quantities relationship it describes. For example, if the function hip gives the number of person-hours it takes to assemble nengines in a factory, then the positive integers would be an appropriate domain for the function. ★ Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ★ ons using different representations. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. ★ Graph linear and quadratic functions, showing intercepts, maxima, and minima. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometr				
34 35 36 Cluster: 37 38 39 Cluster: 40 41 42 43 DOMAIN Cluster:	E.IF.1 E.IF.2 E.IF.3 Interpret funct E.IF.4 E.IF.5 E.IF.6 Analyze funct E.IF.7 E.IF.7.e E.IF.7.e S. HS.F-BF Bull Build a function	recting Functions The concept of a function and use function notation. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If is a function and x is an element of its domain, then f(x) denotes the output of corresponding to the input x. The graph of f is the graph of the equation y = f(x). Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n ≥ 1. Then is a paplication in terms of the context. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervols where the function is increasing, decreasing, positive, or negotive, relative maximums and minimums; symmetries; end behovior, and periodicity. ★ Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ★ Calculate and interpret the average rate of change of a function (presented symbolically or as table) over a specified interval. Estimate the rate of change from a graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ★ Carculate and interpret the average rate of change of a functi				

		Combine standard function types using arithmetic operations. For					
46	F.BF.1.b	example, build a function that models the temperature of a cooling					
	1.51.1.5	body by adding a constant function to a decaying exponential, and					
		relate these functions to the model.					
		Write arithmetic and geometric sequences both recursively and with					
47	F.BF.2	an explicit formula, use them to model situations, and translate					
		between the two forms.★					
Cluster:	Build new fun	ctions from existing functions.					
		Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, k $f(x)$, $f(x) + k$					
		(kx), and $f(x + k)$ for specific values of k (both positive and negative);					
48	F.BF.3	find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using					
		technology. Include recognizing even and odd functions from their					
		graphs and algebraic expressions for them.					
DOMAIN	: HS.F-LE Linea	r, Quadratic, and Exponential Models 🛨		·			
		compare linear, quadratic, and exponential models and solve problem	ıs.				
		Distinguish between situations that can be modeled with linear					
49	F.LE.1	functions and with exponential functions.					
		Prove that linear functions grow by equal differences over equal					
50	F.LE.1.a	intervals, and that exponential functions grow by equal factors over					
		equal intervals.					
51	F.LE.1.b	Recognize situations in which one quantity changes at a constant					
		rate per unit interval relative to another.					
52	F.LE.1.c	Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.					
		Construct linear and exponential functions, including arithmetic and					
53	F.LE.2	geometric sequences, given a graph, a description of a relationship,					
"		or two input-output pairs (include reading these from a table).					
		Observe using graphs and tables that a quantity increasing				-	
54	F.LE.3	exponentially eventually exceeds a quantity increasing linearly,					
		quadratically, or (more generally) as a polynomial function.					
Cluster:	Interpret expr	essions for functions in terms of the situation they model.					
55	F.LE.5	Interpret the parameters in a linear or exponential function in terms					
		of a context.					
	: HS.G-Co - Cor						
Cluster:	Experiment w	ith transformations in the plane.					
		Know precise definitions of angle, circle, perpendicular line, parallel					
56	G.CO.1	line, and line segment, based on the undefined notions of point, line,					
-		distance along a line, and distance around a circular arc. Represent transformations in the plane using, e.g., transparencies					
		and geometry software; describe transformations as functions that					
57	G.CO.2	take points in the plane as inputs and give other points as outputs.					
		Compare transformations that preserve distance and angle to those					
		that do not (e.g., translation versus horizontal stretch).					
58	G.CO.3	Given a rectangle, parallelogram, trapezoid, or regular polygon,					
36	4.00.3	describe the rotations and reflections that carry it onto itself.					
		Develop definitions of rotations, reflections, and translations in					
59	G.CO.4	terms of angles, circles, perpendicular lines, parallel lines, and line					
		segments.					
		Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper,					
60	G.CO.5	or geometry software. Specify a sequence of transformations that					
		will carry a given figure onto another.					
Cluster:	Understand co	ongruence in terms of rigid motions.	•				
		Use geometric descriptions of rigid motions to transform figures and					
61	G.CO.6	to predict the effect of a given rigid motion on a given figure; given					
01	0.00.0	two figures, use the definition of congruence in terms of rigid					
		motions to decide if they are congruent.					
		Use the definition of congruence in terms of rigid motions to show					
62	G.CO.7	that two triangles are congruent if and only if corresponding pairs of					
		sides and corresponding pairs of angles are congruent. Explain how the criteria for triangle congruence (ASA, SAS, and SSS)					
63	G.CO.8	follow from the definition of congruence in terms of rigid motions.					
Cluster:	Make geomet	ric constructions.					
Ciusteri	I State geomet	Make formal geometric constructions with a variety of tools and					
		methods (compass and straightedge, string, reflective devices,					
		paper folding, dynamic geometric software, etc.). Copying a					
64	G.CO.12	segment; copying an angle; bisecting a segment; bisecting an angle;					
		constructing perpendicular lines, including the perpendicular bisector					
		of a line segment; and constructing a line parallel to a given line through a point not on the line.					
	_	Construct an equilateral triangle, a square, and a regular hexagon	+				
65	G.CO.13	inscribed in a circle.					
Cluster:	Use coordinat	es to prove simple geometric theorems algebraically.	· · · · · · · · · · · · · · · · · · ·				
		Use coordinates to prove simple geometric theorems algebraically.					
		For example, prove or disprove that a figure defined by four given					
66	G.PE.4	points in the coordinate plane is a rectangle; prove or disprove that					
		the point $(1, \sqrt{3})$ lies on the circle centered at the origin and					
-		containing the point (0, 2).		-			
		Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line					
67	G.GPE.5	parallel or perpendicular to a given line that passes through a given					
		point).					
68	G.GPE.7	Use coordinates to compute perimeters of polygons and areas of					
		triangles and rectangles, e.g., using the distance formula.★					
DOMAIN	: HS.S-ID - Inte	rpreting Categorical and Quantitative Data					
		present, and interpret data on a single count or measurement variable	e.				
	S.ID.1	Represent data with plots on the real number line (dot plots,					
69	3.IU.1	histograms, and box plots).					
		Use statistics appropriate to the shape of the data distribution to					
70	S.ID.2	compare center (median, mean) and spread (interquartile range,					
		standard deviation) of two or more different data sets.		-			
	S.ID.3	Interpret differences in shape, center, and spread in the context of					
~-		the data sets, accounting for possible effects of extreme data points (outliers).					
71	3.10.3		nies .	<u> </u>	·		
		present, and interpret data on two categorical and quantitative varial	1				
Cluster:	Summarize, re	present, and interpret data on two categorical and quantitative varial Summarize categorical data for two categories in two-way frequency					
		present, and interpret data on two categorical and quantitative varial					
Cluster:	Summarize, re	present, and interpret data on two categorical and quantitative variat Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data					
Cluster:	Summarize, re	present, and interpret data on two categorical and quantitative variat Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies).					
Cluster:	Summarize, re	present, and interpret data on two categorical and quantitative variat Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.					

74	S.ID.6.a	Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.				
75	S.ID.6.b	Informally assess the fit of a function by plotting and analyzing residuals.				
76	S.ID.6.c	Fit a linear function for a scatter plot that suggests a linear association.				
Cluster:	Interpret linea	ar models.				
77		Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	_			
78	S.ID.8	Compute (using technology) and interpret the correlation coefficient of a linear fit.				
79	S.ID.9	Distinguish between correlation and causation.				

C4:	2. Math Cantant Barrion.			
	2: Math Content Review			
	ERS/PROVIDERS:			
	ath Content Review tab will be completed solely by the rev			r score
	ne material based on their overall review of the material. Y		•	
	aterial will be scored for alignment with each criterion as "I	Meets expe	ectations", "Partially meets expectations", or	
"Does	not meet expectations".			
Criteria			Required: Reviewer's Evidence from Material	
#	Grades K-12 Math Content Criteria	Score	Include where you found the evidence in the material and what	Comments, citations, notes
			evidence you found that supports your score.	
	REA 1: RIGOR AND MATHEMATICAL PRACTICES			p
	s support student mastery through a grade-appropriate ba			application.
Material	s meaningfully connect the Content Standards (CCSS) with	tne Stand	ards for Mathematical Practice (SMPs).	
	Conceptual Understanding:			
1	Materials support the intentional development of			
	students' conceptual understanding of key mathematical			
	concepts.			
	Procedural Skill and Fluency:			
2	Materials support intentional opportunities for students			
_	to develop procedural skills and fluencies in alignment			
	with what is called for in the grade-level standards.			
	Application:			
	Materials support students' ability to leverage			
3	mathematical skills, concepts, representations, and			
	strategies across a range of contexts, (including applying			
	learning to real-world situations and new contexts).			
	Balance of Rigor:			
	With equitable intensity			
4	The three aspects of rigor are not always treated			
4	together and are not always treated separately. The			
	three aspects are balanced with respect to the standards			
	being addressed in each grade level.			
	SMPs 1 and 6			
	Materials support the intentional development of			
5	making sense of problems and attending to precision as			
	required by the mathematical practice standards 1 and			
	6.			
	SMPs 2 and 3			
	Materials support the intentional development of			
_	reasoning abstractly and quantitatively, along with			
6	developing viable arguments and critiquing the			
	reasoning of others, in connection to the content			
	standards, as required by the practice standards 2 and 3.			
	SMPs 4 and 5			
	Materials support the intentional development of			
7	modeling and using tools, in connection to the content			
	standards, as required by the mathematical practice			
	standards 4 and 5.			
	SMPs 7 and 8			
	Materials support the intentional development of seeing			
8	structure and generalizing, in connection to the content			
	standards, as required by the mathematical practice			
	standards 7 and 8.			
	-			
FOCUS A	REA 2: STUDENT CENTERED INSTRUCTION			
	s contain embedded resources (routines, strategies, and p	edagogica	suggestions) to support all students in developing a po	sitive
	atical identity, cultivating self-efficacy, and seeing themse			
	Materials provide students with opportunities to		,	
	develop self-efficacy and a positive mathematical			
9	identity through opportunities to engage in grade-level			
	tasks using various sharing strategies and approaches.			
	Materials provide opportunities for students to see			
10	themselves as contributors to the math community.			
			1	1

FOCUS A	FOCUS AREA 3: INSTRUCTIONAL SUPPORTS FOR ALL STAKEHOLDERS				
	s provide guidance and resources to support educators in				
	tiated instruction to all students. Materials contain helpfu	resources	to support implementation and instruction (e.g. materi	ials for	
leaders,	teachers, students, families/ caregivers, etc).				
	Teacher materials contain full, adult-level explanations				
	and examples of the mathematics concepts within				
11	lessons so teachers can improve their own knowledge of				
	the subject. Materials are in print or clearly				
	distinguished/accessible as a teacher's edition in digital				
	materials.				
	The materials provide guidance for unit/lesson				
12	preparation to support use of the materials as intended				
12	and to further develop the teachers' own understanding				
	of the mathematical approach.				
	Teacher materials provide insight into students' ways of				
13	thinking with respect to important mathematical				
13	concepts, especially anticipating a variety of student				
	responses.				
	Materials contain strategies for informing parents or				
14	caregivers about the mathematics program and				
14	suggestions for how they can help support student				
	progress and achievement.				

Section	2: All Content Review			
PUBLISH	ERS/PROVIDERS:			
	Content Review tab will be completed solely by the review	•	·	core
	he material based on their overall review of the material.			
	aterial will be scored for alignment with each criterion as "	Meets expe	ectations", "Partially meets expectations", or	
	not meet expectations".		Required: Reviewer's Evidence from Material	
Criteria #	All Content Criteria Review	Score	Include where you found the evidence in the material and what evidence you found that supports your score.	Comments, citations, notes
	REA 1: COHERENCE			
	onal materials are coherent and consistent with the New		ntent Standards	
that all s	students should study in order to be college- and career-re	eady.		
1	Instructional materials address the full content contained in the standards for all students by grade level.			
2	Instructional materials support students to show mastery of each standard.			
3	Instructional materials require students to engage at a level of maturity appropriate to the grade level under			
	review.			
4	Instructional materials are coherent, making meaningful connections for students by linking the standards within			
	a lesson and unit.			
FOCUS A	REA 2: WELL-DESIGNED LESSONS			
Instructi	onal materials take into account effective lesson structure	and pacin	g.	
	The Teacher Edition presents learning progressions to			
5	provide an overview of the scope and sequence of skills			
3	and concepts. The design of the assignments shows a purposeful sequencing of teaching and learning			
	expectations.			
	Within each lesson of the instructional materials, there			
6	are clear, measurable, standards-aligned content			
	objectives.			
_	Within each lesson of the instructional materials, there			
7	are clear, measurable language objectives tied directly to the content objectives.			
	Instructional materials provide focused resources to			
8	support students' acquisition of both general academic			
	vocabulary and content-specific vocabulary.			
	The visual design of the instructional materials (whether			
9	in print or digital) maintains a consistent layout that			
	supports student engagement with the subject.			
10	Instructional materials incorporate features that aid students and teachers in making meaning of the text.			
	Instructional materials provide students with ongoing			
11	review and practice for the purpose of retaining			
	previously acquired knowledge.			
	REA 3: RESOURCES FOR PLANNING			
	onal materials provide teacher resources to support plant	ning, learni	ng,	
and und	erstanding of the New Mexico Content Standards.			
	Instructional materials provide a list of lessons in the Teacher Edition (in print or clearly distinguished/			
	accessible as a teacher's edition in digital materials),			
12	cross-referencing the standards addressed and providing			
	an estimated instructional time for each lesson, chapter,			
	and unit.			
	Instructional materials support teachers with			
13	instructional strategies to help guide students' academic			
	development. Instructional materials include a teacher edition/			
	teacher-facing material with useful annotations and			
14	suggestions on how to present the content in the			
	student edition/student-facing material and in the			
	supporting material			

15	Instructional materials integrate opportunities for digital learning, including interactive digital components.			
	REA 4: ASSESSMENT			
	onal materials offer teachers a variety of assessment reso		tools	
to collect	t ongoing data about student progress related to the stan Instructional materials provide a variety of assessments	aaras.		
	that measure student progress in all strands of the			
16	standards for the content under review.			
	(Adopted New Mexico Content Standards for 2024: NM			
	STEM Ready Science Standards)			
	Instructional materials provide multiple formative and			
17	summative assessments, clearly defining which			
17	standards are being assessed through content and			
	language objectives.			
	Instructional materials provide scoring guides for			
	assessments that are aligned with the standards they			
18	address, and that offer teachers guidance in interpreting			
	student performance and suggestions for further			
	instruction, differentiation, and/or acceleration.			
	Instructional materials provide appropriate assessment alternatives for English Learners, Culturally and			
19	Linguistically Diverse students, advanced students, and			
	special needs students.			
	Instructional materials include opportunities to assess			
20	student understanding and knowledge of the standards			
	using technology.			
	REA 5: EXTENSIVE SUPPORT			
Instruction	onal materials give all students extensive opportunities a	nd support	to explore key concepts.	
21	Instructional materials can be customized or adapted to			
	meet the needs of different student populations.			
22	Instructional materials provide differentiated strategies and/or activities to meet the needs of students working			
22	below proficiency and those of advanced learners.			
	Instructional materials provide appropriate linguistic			
	support for English Learners and Culturally and			
	Linguistically Diverse students, and accommodations			
23	and modifications for other special populations that will			
	support their regular and active participation in learning			
	content.			
	Instructional materials provide strategies and resources			
	for teachers to inform and engage parents, family			
24	members, and caregivers of all learners about the			
	program and provide suggestions for how they can help			
	support student progress and achievement. Instructional materials include opportunities for all			
	students that encourage and support critical and			
25	creative thinking, inquiry, and complex problem-solving			
	skills.			
FOCUS A	REA 6: CULTURAL AND LINGUISTIC PERSPECTIVES			
Instruction	onal materials represent a variety of cultural and linguisti	c perspecti	ves.	
	Instructional materials inform culturally and linguistically			
26	responsive pedagogy by affirming students' backgrounds			
	in the materials themselves and in the student			
	discussions.			
	Instructional materials provide a collection of images, stories, and information, representing a broad range of			
27	demographic groups, and do not make generalizations			
	or reinforce stereotypes.			
	Instructional materials provide context, illustrations, and			
	activities for students to make interdisciplinary			
28	connections and/or connections to real-life experiences			
	and diverse cultural and linguistic backgrounds.			
FOCUS A	REA 7: INCLUSION OF CULTURALLY AND LINGUISTICALLY F	RESPONSIV	E LENS	
Instruction	onal materials highlight diversity in culture and language	through m	ultiple perspectives.	

29	Instructional materials include tools and resources to relate the content area appropriately to diversity in		
	culture and language.		
30	Instructional materials include tools and resources that		
	demonstrate multiple perspectives in a specific concept.		
	Instructional materials engage students in critical		
31	reflection about their own lives and societies, including		
	cultures past and present in New Mexico.		
	Instructional materials address multiple ethnic		
32	descriptions, interpretations, or perspectives of events		
	and experiences.		

Stand	Standards for Mathematical Practice					
1	Make sense of problems and persevere in solving them.					
2	Reason abstractly and quantitatively.					
3	Construct viable arguments and critique the reasoning of others.					
4	Model with mathematics.					
5	Use appropriate tools strategically.					
6	Attend to precision.					
7	Look for and make use of structure.					
8	Look for and express regularity in repeated reasoning.					