

F.14 - High School Geometry

PUBLISHER/PROVIDER MATERIAL INFORMATION (TO BE COMPLETED BY PUBLISHER/PROVIDER)						
Publisher/Provider Name/Imprint:		Grade(s):				
Title of Student Edition:		Student Edition ISBN:				
Title of Teacher Edition:		Teacher Edition ISBN:				
Title of SE Workbook:		SE Workbook ISBN:				

PUBLISHER/PROVIDER CITATION VIDEO: Reviewer must view video before starting the review of this set of materials.					
Citation Video Link:					
Litation video certification:	I certify that I have viewed the citation set of materials.				
Digital Material Log In: (Include ONLY if submitting digital materials as part of the review set listed above.)	Website:	Username:	Password:		

Section 1: Standards Review -- Math Content Standards

PUBLISHER/PROVIDER INSTRUCTIONS:

• Publisher/Provider citations for this section will refer to the Teacher Edition (teacher-facing core material). The cited Teacher Edition should correspond with the title and ISBN entered on the Form F cover page, whether in print, online, or both The review set submitted to the summer review institute should also correspond with what is cited on the Form F. If the review set is an online platform only, then that is what should be cited on the Form F and submitted for review by the review set is an online platform only, then that is what should be cited on the Form F and submitted for review by the review set is an online platform only, then that is what should be cited on the Form F and submitted for review by the review set is an online platform only, then that is what should be cited on the Form F and submitted for review by the review set is an online platform only, then that is what should be cited on the Form F and submitted for review by the review set is an online platform only, then that is what should be cited on the Form F and submitted for review by the review set is an online platform only, then that is what should be cited on the Form F and submitted for review by the review set is an online platform only, then that is what should be cited on the Form F and submitted for review by the review set is an online platform only, then that is what should be cited on the Form F and submitted for review by the review set is an online platform only, then that is what should be cited on the Form F and submitted for review by the review set is an online platform only. teams. If the review set is in print only, then that is what should be cited on the Form F and submitted for review by the review teams.

• For this section, the publisher/provider will enter one citation per math content standard in Column D. Each citation should direct the reviewer to a specific location in the materials that best meets the standard. The citations should be concise and should allow the reviewer to easily determine that all components of the standard have been met. Each citation should cover no more than 3 page 1975.

o Column D: Enter one citation in Column D from the Teacher Edition (teacher-facing core material). Each citation should direct the reviewer to a specific location in the materials that best meets the standard. If necessary, you may enter multiple, targeted citations in order to address standards with multiple components. Use as few citations as needed to meet the full intent of the standard. Your citations should be concise and should allow the reviewer to easily determine that the full intent and all components of the standard have been met

o Column E: The material will be scored for alignment with each standard as "Meets expectations", "Partially meets expectations", or "Does not meet expectations" based on the citation provided.

o NOTE: You may not use a citation more than once across ALL sections of the rubric. Criteria Standard F.14 High School Geometry Standards Review Required: Reviewer's Evidence Score Comments, other citations, notes DOMAIN: HS.G-Co - Co Cluster: Experiment with transformations in the plane. Know precise definitions of angle, circle, perpendicular line, parallel 1 G.CO.1 line, and line segment, based on the undefined notions of point, line distance along a line, and distance around a circular arc. Represent transformations in the plane using, e.g., transparencies and geometry software: describe transformations as functions that G.CO.2 take points in the plane as inputs and give other points as outputs 2 Compare transformations that preserve distance and angle to those hat do not (e.g., translation versus horizontal stretch). Given a rectangle, parallelogram, trapezoid, or regular polygon, 3 G.CO.3 describe the rotations and reflections that carry it onto itself Develop definitions of rotations, reflections, and translations i 4 G.CO.4 terms of angles, circles, perpendicular lines, parallel lines, and line Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that 5 G (O 5 will carry a given figure onto another. ongruence in terms of rigid motions. Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given G.CO.6 two figures, use the definition of congruence in terms of rigid notions to decide if they are congruent. Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. 7 G.CO.7 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) 8 G.CO.8 follow from the definition of congruence in terms of rigid mo ic theorem. Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, G.CO.9 lternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.

Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the 10 G.CO.10 medians of a triangle meet at a point. ns about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of G.CO.11 11 a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals. ric constructions. Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a 12 G.CO.12 segment; copying an angle; bisecting a segment; bisecting an angle; onstructing perpendicular lines, including the perpendicular bisecto of a line segment; and constructing a line parallel to a given line through a point not on the line. n equilateral triangle, a square, and a regular hexagon 13 G.CO.13 inscribed in a circle. OOMAIN: HS.G-SRT - S nilarity in terms of similarity transformation Verify experimentally the properties of dilations given by a center 14 G.SRT.1 A dilation takes a line not passing through the center of the dilation 15 G.SRT.1.a to a parallel line, and leaves a line passing through the cente inchanged. The dilation of a line segment is longer or shorter in the ratio given 16 G.SRT.1.b Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using 17 G SRT 2 similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. Use the properties of similarity transformations to establish the AA 18 G.SRT.3 criterion for two triangles to be similar. s involving similarity. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and 19 G.RST.4 conversely; the Pythagorean Theorem proved using triangle imilarity. Use congruence and similarity criteria for triangles to solve problems 20 G.RST.5 and to prove relationships in geometric figures netric ratios and solve problems involving right triangles Understand that by similarity, side ratios in right triangles are 21 G.RST.6 properties of the angles in the triangle, leading to definitions of rigonometric ratios for acute angles. Explain and use the relationship between the sine and cosine of G.RST.7 22 complementary angles. Use trigonometric ratios and the Pythagorean Theorem to solve 23 G.RST.8 right triangles in applied problems. 🖈 Cluster netry to general triangles. (+) Derive the formula A = 1/2 ab sin(C) for the area of a triangle by G.RST.9 drawing an auxiliary line from a vertex perpendicular to the opposite 24 (+) Prove the Laws of Sines and Cosines and use them to solve 25 G.RST.10

		(+) Understand and apply the Law of Sines and the Law of Cosines to			
26	G.RST.11	find unknown measurements in right and non-right triangles (e.g.,			
DOMANIA		surveying problems, resultant forces).			
	: HS.G-C - Circl				
27	G.C.1	nd apply theorems about circles. Prove that all circles are similar.			
27	G.C.1	Identify and describe relationships among inscribed angles, radii,			
		and chords. Include the relationship between central, inscribed, and			
28	G.C.2	circumscribed angles; inscribed angles on a diameter are right			
		angles; the radius of a circle is perpendicular to the tangent where			
		the radius intersects the circle.			
29	G.C.3	Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.			
30	664	(+) Construct a tangent line from a point outside a given circle to the			
	G.C.4	circle.			
Cluster:	Find arc lengt	hs and areas of sectors of circles.		 	
		Derive using similarity the fact that the length of the arc intercepted			
31	G.C.5	by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the			
		formula for the area of a sector.			
DOMAIN	: HS.G-GPE - Ex	pressing Geometric Properties with Equations			
Cluster:	Translate bety	ween the geometric description and the equation for a conic section.			
		Derive the equation of a circle of given center and radius using the			
32	G.GPE.1	Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.			
33	G.GPE.2	Derive the equation of a parabola given a focus and directrix.			
Cluster:	Use coordinat	es to prove simple geometric theorems algebraically.			
		Use coordinates to prove simple geometric theorems algebraically.			
		For example, prove or disprove that a figure defined by four given			
34	G.GPE.4	points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and			
		containing the point (0, 2).			
		Prove the slope criteria for parallel and perpendicular lines and use			
35	G.GPE.5	them to solve geometric problems (e.g., find the equation of a line			
		parallel or perpendicular to a given line that passes through a given point).			
	0.555	Find the point on a directed line segment between two given points			
36	G.GPE.6	that partitions the segment in a given ratio.			
37	G.GPE.7	Use coordinates to compute perimeters of polygons and areas of			
		triangles and rectangles, e.g., using the distance formula.★			
		Geometric Measurement and Dimension			
Cluster:	Explain volum	Give an informal argument for the formulas for the circumference of			
20	C CMD 4	a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use			
38	G.GMD.1	dissection arguments, Cavalieri's principle, and informal limit			
		arguments.			
39	G.GMD.3	Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. ★			
Cluster:	Visualize relat	ionships between two-dimensional and three-dimensional objects.			
		Identify the shapes of two-dimensional cross-sections of three-			
40	G.GMD.4	dimensional objects, and identify three-dimensional objects			
DOMANN	LCS C MC M	generated by rotations of two-dimensional objects.			
		odeling with Geometry			
		ric concepts in modeling situations.			
Cluster:	Apply geomet	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).**			
Cluster:	Apply geomet	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). * Apply concepts of density based on area and volume in modeling			
Cluster: 41	Apply geomet	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★			
Cluster: 41	Apply geomet	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). * Apply concepts of density based on area and volume in modeling			
41 42 43	G.MG.1 G.MG.2 G.MG.3	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). * Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). * Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). *			
41 42 43 DOMAIN	G.MG.1 G.MG.2 G.MG.3	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).★ ditional Probability and the Rules of Probability			
41 42 43 DOMAIN	G.MG.1 G.MG.2 G.MG.3	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost, working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability dependence and conditional probability and use them to interpret da	ta.		
41 42 43 DOMAIN	G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Cor	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes)	ta.		
41 42 43 DOMAIN Cluster:	G.MG.1 G.MG.2 G.MG.3	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost, working with typographic grid systems based on ratios).★ ditional Probability and the Rules of Probability dependence and conditional probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	ta.		
41 42 43 DOMAIN Cluster:	G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Cor	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the	ta.		
41 42 43 DOMAIN Cluster:	G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Cor	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).★ ditional Probability and the Rules of Probability dependence and conditional probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or a unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their	ta.		
Cluster: 41 42 43 DOMAIN Cluster: 44	G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Cor Understand ir	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the	ta.		
Cluster: 41 42 43 DOMAIN Cluster: 44	G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Cor Understand ir	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).★ ditional Probability and the Rules of Probability dependence and conditional probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or a unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. Understand the conditional probability of A given Bas P(A and B)/P	ta.		
41 42 43 DOMAIN Cluster: 44 45	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Corr Understand ir S.CP.1	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability and use the stream of the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. Understand the conditional probability of A given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the	ta.		
Cluster: 41 42 43 DOMAIN Cluster: 44	G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Cor Understand ir	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probabilities, and use this characterization to determine if they are independent. Understand the conditional probability of A given Bas P(A and B)/P (8), and interpret independence of A and Bas saying that the conditional probability of A given B is the same as the probability of	ta.		
41 42 43 DOMAIN Cluster: 44 45	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Corr Understand ir S.CP.1	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability and use the stream of the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. Understand the conditional probability of A given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the	ta.		
41 42 43 DOMAIN Cluster: 44 45	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Corr Understand ir S.CP.1	Ive geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. Understand the conditional probability of A given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of B given B is the same as the probability of A, and the conditional probability of B given B is the same as the probability of A, and the conditional probability of B given B is the same as the probability of A. Construct and interpret two-way frequency tables of data when two	ta.		
41 42 43 DOMAIN Cluster: 44 45	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Corr Understand ir S.CP.1	Ive concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability and use the standard that two events and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. Understand the conditional probability of A given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of A given B is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the	ta.		
41 42 43 DOMAIN Cluster: 44 45	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Corr Understand ir S.CP.1	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret de Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ["or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability is the conditional probability of A given B is the saving that the conditional probability of A given B is the same as the probability of B, and interpret independence of A and B as as as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the tow-way table as a sample space to decide if events are independent.	ta.		
41 42 43 DOMAIN Cluster: 44 45	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Corr Understand ir S.CP.1	Ive concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability and use the standard that two events and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. Understand the conditional probability of A given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of A given B is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the	ta.		
41 42 43 DOMAIN Cluster: 44 45	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Cor Understand ir S.CP.1 S.CP.2	Ive geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probabilities, and not be a subject of the probabilities and the conditional probability of A given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of A given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of B given A is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their fovorite subject among math, science, and English. Estimate the	ta.		
41 42 43 DOMAIN Cluster: 44 45	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Cor Understand ir S.CP.1 S.CP.2	Ive geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability and use them to interpret independent. Understand the conditional probability of A given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of A given B is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space the decide if events are independent and to a probability of B.	ta.		
41 42 43 DOMAIN Cluster: 44 45	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Cor Understand ir S.CP.1 S.CP.2	Ive geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probabilities, and not be a subject of the probabilities and the conditional probability of A given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of A given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of B given A is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their fovorite subject among math, science, and English. Estimate the	ta.		
41 42 43 DOMAIN Cluster: 44 45	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Cor Understand ir S.CP.1 S.CP.2	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost, working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of B given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect dato from a random sample of students in your school on their fovorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will fovor science given that the student is in tenth grade. Do the same for other subjects and compare the results.	ta.		
41 42 43 DOMAIN Cluster: 44 45	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Cor Understand ir S.CP.1 S.CP.2	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost, working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret de Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probabilities, and use this characterization to determine if they are independent. Understand that two events A and B are independent if they are independent. Understand the conditional probability of A given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of A given B is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of Supern Bas Ed and here two and the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table of students in nething que. Do un exchool on their favorite subject among math, science, and English. Estimate the probability that or anadomy selected student from your school on their favor science given that the student is in tenth grade. Do the same for other subjects and compare the results. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations	ta.		
41 42 43 DOMAIN Cluster: 44 45 46	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Cor Understand in S.CP.1 S.CP.2 S.CP.2	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events "or"," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability and use them the conditional probability of A given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of B given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of B given Bas P(A and B) (P) (B), and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to the decide if events are independent and to approximate conditional probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to redecide if events are independent and to approximate conditional probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to redecide if events are independent of the role of the subject and compare the results. Recognize and explain the conc	ta.		
Cluster: 41 42 43 DOMAIN Cluster: 44 45 46	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP-Corr Understand in S.CP.1 S.CP.2 S.CP.3	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost, working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret de Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probabilities, and use this characterization to determine if they are independent. Understand that two events A and B are independent if they are independent. Understand the conditional probability of A given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of A given B is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of Supern Bas Ed and here two and the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table of students in nething que. Do un exchool on their favorite subject among math, science, and English. Estimate the probability that or anadomy selected student from your school on their favor science given that the student is in tenth grade. Do the same for other subjects and compare the results. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations			
Cluster: 41 42 43 DOMAIN Cluster: 44 45 46 47	Apply geomet G.MG.1 G.MG.2 G.MG.3 HS.S-CP- Corr Understand in S.CP.1 S.CP.2 S.CP.3 Use the rules	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost, working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability of A given B is the same as the probability of the outcomes of the ou			
Cluster: 41 42 43 DOMAIN Cluster: 44 45 46	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP-Corr Understand in S.CP.1 S.CP.2 S.CP.3	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost, working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probabilities, and use this characterization to determine if they are independent. Understand that two events A and B are independent if the probabilities, and use this characterization to determine if they are independent. Understand the conditional probability of A given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of A given B is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of B given B is Estimate the probability that a randomly selected student from your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school on their favorite subjects and compare the results. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare t			
Cluster: 41 42 43 DOMAIN Cluster: 44 45 46 47 48 Cluster: 49	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP-Cor Understand ir S.CP.1 S.CP.2 S.CP.3 Use the rules S.CP.6	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events "(or," "and," "not."). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability and use them to determine if they are independent. Understand the conditional probability of A given B is the same as the probability of A and B occurring together is the product of their conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of B. Recognize and explain the concepts of conditional probability for my our school on their favorite subjects and compare the results. Recognize and explain the concepts of conditional probability for our ear of probability to compute proba			
Cluster: 41 42 43 DOMAIN Cluster: 44 45 46 47	Apply geomet G.MG.1 G.MG.2 G.MG.3 HS.S-CP- Corr Understand in S.CP.1 S.CP.2 S.CP.3 Use the rules	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A given B is the same as the conditional probability of A given B as P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of B given A is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect of from a random sample of students in your school on their flovorite subject among moth, science, and English. Estimate the probability that a randomly selected student from your school will flovor science given that the student is in tenth grade. Do the same for other subjects and compare the results. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, congret the chance of being a smoker if you have lung cancer.			
Cluster: 41 42 43 DOMAIN Cluster: 44 45 46 47 48 Cluster: 49	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP-Cor Understand ir S.CP.1 S.CP.2 S.CP.3 Use the rules S.CP.6	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events "(or," "and," "not."). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability and use them to determine if they are independent. Understand the conditional probability of A given B is the same as the probability of A and B occurring together is the product of their conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of B. Recognize and explain the concepts of conditional probability for my our school on their favorite subjects and compare the results. Recognize and explain the concepts of conditional probability for our ear of probability to compute proba			
Cluster: 41 42 43 DOMAIN Cluster: 44 45 46 47 48 Cluster: 49	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP-Cor Understand ir S.CP.1 S.CP.2 S.CP.3 Use the rules S.CP.6	Ive geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost, working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability, and use this characterization to determine if they are independent. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability of B given B as P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect dato from a random sample of students in your school on their flavorite subject among moth, science, and English. Estimate the probability that a randomly selected student from your school will flavor science given that the student is in tenth grade. Do the same for other subjects and compare the chance for having lung cancer if you are a smoker, with the chance obje			
Cluster: 41 42 43 DOMAIN Cluster: 44 45 46 47 48 Cluster: 49 50 51	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP-Corr Understand in S.CP.1 S.CP.2 S.CP.3 S.CP.4 Use the rules S.CP.6 S.CP.7 S.CP.8	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events "(or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability and use them to determine if they are independent. Understand the conditional probability of A given B is the same as the probability of Man and B are independent if they are independent. Understand the conditional probability of A given B as P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of A given B is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of B given A is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of B. Recognize and explain the concepts of conditional probability for or everyday situations. For example, collect data from a random sample of students in your school on their favorite subject among moth, science, and En			
Cluster: 41 42 43 DOMAIN Cluster: 44 45 46 47 48 Cluster: 49 50	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Cor Understand in S.CP.1 S.CP.2 S.CP.3 S.CP.4 Use the rules S.CP.6	Ive geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A given B is the same as the probability of A, and the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of B given A is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of from or random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that or andomly selected student from your school will favor science given that the student is in tenth grade. Do the same for oth			
Cluster: 41 42 43 DOMAIN Cluster: 44 45 46 47 48 Cluster: 49 50 51	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP-Corr Understand in S.CP.1 S.CP.2 S.CP.3 S.CP.4 Use the rules S.CP.6 S.CP.7 S.CP.8 S.CP.9	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events "(or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability and use them to determine if they are independent. Understand the conditional probability of A given B is the same as the probability of Man and B are independent if they are independent. Understand the conditional probability of A given B as P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of A given B is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of B given A is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of B. Recognize and explain the concepts of conditional probability for or everyday situations. For example, collect data from a random sample of students in your school on their favorite subject among moth, science, and En			
A1	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Cor Understand ir S.CP.1 S.CP.2 S.CP.3 S.CP.4 S.CP.4 S.CP.5 Use the rules S.CP.6 S.CP.7 S.CP.8 S.CP.9	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost, working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B as reindependent if the probabilities, and use this characterization to determine if they are independent. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. Understand the conditional probability of A given Bas P(A and B)/P (B), and interpret independence of A and Bas saying that the conditional probability of A given B is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of B given A is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of B. Construct and interpret two-may frequency tables of data when two categories are associated with each object being classified. Use the two-way tabl			
41 42 43 DOMAIN Cluster: 44 45 46 47 48 Cluster: 49 50 51 52 DOMAIN Cluster:	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Cor Understand ir S.CP.1 S.CP.2 S.CP.2 S.CP.4 S.CP.4 S.CP.5 Use the rules S.CP.6 S.CP.7 S.CP.8 S.CP.9 : HS.S-MD - Us Use probability	ric concepts in modeling situations. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events and B are independent if the probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A given B is the same as the probability of A given B is the same as the probability of A, and the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of B given A is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of B. Construct and interpret two-may frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide			
Cluster: 41	Apply geomet G.MG.1 G.MG.2 G.MG.3 : HS.S-CP - Cor Understand ir S.CP.1 S.CP.2 S.CP.3 S.CP.4 S.CP.4 S.CP.5 Use the rules S.CP.6 S.CP.7 S.CP.8 S.CP.9	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder). ★ Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★ Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). ★ ditional Probability and the Rules of Probability and use them to interpret da Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not"). Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the probability of A and B occurring together is the probability of A and B occurring together is the probability of A, and the conditional probability of A given B is the same as the probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of B. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to reduce the first or example, collect and from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability tha randomly selected student from your school will favor sci			

54	S.MD.7	(+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).				

C4:	2. Math Cantant Daview					
	2: Math Content Review					
	ERS/PROVIDERS:					
	ath Content Review tab will be completed solely by the rev			r score		
	from the material based on their overall review of the material. You will not provide any citations for this tab.					
• The ma	aterial will be scored for alignment with each criterion as "I	Meets expe	ectations", "Partially meets expectations", or			
"Does	not meet expectations".					
Criteria			Required: Reviewer's Evidence from Material			
#	Grades K-12 Math Content Criteria	Score	Include where you found the evidence in the material and what	Comments, citations, notes		
			evidence you found that supports your score.			
	REA 1: RIGOR AND MATHEMATICAL PRACTICES			p		
	s support student mastery through a grade-appropriate ba			application.		
Material	s meaningfully connect the Content Standards (CCSS) with	tne Stand	ards for Mathematical Practice (SMPs).			
	Conceptual Understanding:					
1	Materials support the intentional development of					
	students' conceptual understanding of key mathematical					
	concepts.					
	Procedural Skill and Fluency:					
2	Materials support intentional opportunities for students					
_	to develop procedural skills and fluencies in alignment					
	with what is called for in the grade-level standards.					
	Application:					
	Materials support students' ability to leverage					
3	mathematical skills, concepts, representations, and					
	strategies across a range of contexts, (including applying					
	learning to real-world situations and new contexts).					
	Balance of Rigor:					
	With equitable intensity					
4	The three aspects of rigor are not always treated					
4	together and are not always treated separately. The					
	three aspects are balanced with respect to the standards					
	being addressed in each grade level.					
	SMPs 1 and 6					
	Materials support the intentional development of					
5	making sense of problems and attending to precision as					
	required by the mathematical practice standards 1 and					
	6.					
	SMPs 2 and 3					
	Materials support the intentional development of					
_	reasoning abstractly and quantitatively, along with					
6	developing viable arguments and critiquing the					
	reasoning of others, in connection to the content					
	standards, as required by the practice standards 2 and 3.					
	SMPs 4 and 5					
	Materials support the intentional development of					
7	modeling and using tools, in connection to the content					
	standards, as required by the mathematical practice					
	standards 4 and 5.					
	SMPs 7 and 8					
	Materials support the intentional development of seeing					
8	structure and generalizing, in connection to the content					
_	standards, as required by the mathematical practice					
	standards 7 and 8.					
FOCUS A	REA 2: STUDENT CENTERED INSTRUCTION					
	s contain embedded resources (routines, strategies, and p	edagogical	suggestions) to support all students in developing a no	sitive		
	atical identity, cultivating self-efficacy, and seeing themse			Sitive		
atrieni	Materials provide students with opportunities to	ives as a cc	main community.			
	develop self-efficacy and a positive mathematical					
9	identity through opportunities to engage in grade-level					
	tasks using various sharing strategies and approaches.					
10	Materials provide opportunities for students to see					
	themselves as contributors to the math community.					

FOCUS A	FOCUS AREA 3: INSTRUCTIONAL SUPPORTS FOR ALL STAKEHOLDERS					
	Materials provide guidance and resources to support educators in internalizing the mathematical content and providing responsive and					
	differentiated instruction to all students. Materials contain helpful resources to support implementation and instruction (e.g. materials for					
leaders,	teachers, students, families/ caregivers, etc).					
	Teacher materials contain full, adult-level explanations					
	and examples of the mathematics concepts within					
11	lessons so teachers can improve their own knowledge of					
	the subject. Materials are in print or clearly					
	distinguished/accessible as a teacher's edition in digital					
	materials.					
	The materials provide guidance for unit/lesson					
12	preparation to support use of the materials as intended					
12	and to further develop the teachers' own understanding					
	of the mathematical approach.					
	Teacher materials provide insight into students' ways of					
13	thinking with respect to important mathematical					
13	concepts, especially anticipating a variety of student					
	responses.					
	Materials contain strategies for informing parents or					
14	caregivers about the mathematics program and					
14	suggestions for how they can help support student					
	progress and achievement.					

Section	2: All Content Review			
PUBLISH	ERS/PROVIDERS:			
	Content Review tab will be completed solely by the review	•	·	core
	he material based on their overall review of the material.			
	aterial will be scored for alignment with each criterion as "	Meets expe	ectations", "Partially meets expectations", or	
	not meet expectations".		Required: Reviewer's Evidence from Material	
Criteria #	All Content Criteria Review	Score	Include where you found the evidence in the material and what evidence you found that supports your score.	Comments, citations, notes
	REA 1: COHERENCE			
	onal materials are coherent and consistent with the New		ntent Standards	
that all s	students should study in order to be college- and career-re	eady.		
1	Instructional materials address the full content contained in the standards for all students by grade level.			
2	Instructional materials support students to show mastery of each standard.			
3	Instructional materials require students to engage at a level of maturity appropriate to the grade level under			
	review.			
4	Instructional materials are coherent, making meaningful connections for students by linking the standards within			
	a lesson and unit.			
	REA 2: WELL-DESIGNED LESSONS			
Instructi	onal materials take into account effective lesson structure	and pacin	g. 	
	The Teacher Edition presents learning progressions to provide an overview of the scope and sequence of skills			
5	and concepts. The design of the assignments shows a			
	purposeful sequencing of teaching and learning			
	expectations.			
	Within each lesson of the instructional materials, there			
6	are clear, measurable, standards-aligned content			
	objectives.			
7	Within each lesson of the instructional materials, there are clear, measurable language objectives tied directly			
	to the content objectives.			
8	Instructional materials provide focused resources to support students' acquisition of both general academic			
	vocabulary and content-specific vocabulary.			
	The visual design of the instructional materials (whether			
9	in print or digital) maintains a consistent layout that supports student engagement with the subject.			
10	Instructional materials incorporate features that aid			
	students and teachers in making meaning of the text.			
11	Instructional materials provide students with ongoing review and practice for the purpose of retaining			
FOCUS A	previously acquired knowledge. REA 3: RESOURCES FOR PLANNING			
	onal materials provide teacher resources to support plant	ning learni	ng	
	erstanding of the New Mexico Content Standards.	iiig, icaiiii	''b'	
	Instructional materials provide a list of lessons in the			
	Teacher Edition (in print or clearly distinguished/			
12	accessible as a teacher's edition in digital materials),			
12	cross-referencing the standards addressed and providing			
	an estimated instructional time for each lesson, chapter, and unit.			
	Instructional materials support teachers with			
13	instructional strategies to help guide students' academic development.			
	Instructional materials include a teacher edition/			
	teacher-facing material with useful annotations and			
14	suggestions on how to present the content in the			
	student edition/student-facing material and in the			

15	Instructional materials integrate opportunities for digital learning, including interactive digital components.			
	REA 4: ASSESSMENT			
	onal materials offer teachers a variety of assessment reso		tools	
to collect	t ongoing data about student progress related to the stan Instructional materials provide a variety of assessments	aaras.		
	that measure student progress in all strands of the			
16	standards for the content under review.			
	(Adopted New Mexico Content Standards for 2024: NM			
	STEM Ready Science Standards)			
	Instructional materials provide multiple formative and			
17	summative assessments, clearly defining which			
17	standards are being assessed through content and			
	language objectives.			
	Instructional materials provide scoring guides for			
	assessments that are aligned with the standards they			
18	address, and that offer teachers guidance in interpreting			
	student performance and suggestions for further			
	instruction, differentiation, and/or acceleration. Instructional materials provide appropriate assessment			
	alternatives for English Learners, Culturally and			
19	Linguistically Diverse students, advanced students, and			
	special needs students.			
	Instructional materials include opportunities to assess			
20	student understanding and knowledge of the standards			
	using technology.			
	REA 5: EXTENSIVE SUPPORT	_		
Instruction	onal materials give all students extensive opportunities a	nd support	to explore key concepts.	
21	Instructional materials can be customized or adapted to			
	meet the needs of different student populations. Instructional materials provide differentiated strategies			
22	and/or activities to meet the needs of students working			
	below proficiency and those of advanced learners.			
	Instructional materials provide appropriate linguistic			
	support for English Learners and Culturally and			
22	Linguistically Diverse students, and accommodations			
23	and modifications for other special populations that will			
	support their regular and active participation in learning			
	content.			
	Instructional materials provide strategies and resources			
	for teachers to inform and engage parents, family			
24	members, and caregivers of all learners about the			
	program and provide suggestions for how they can help			
	support student progress and achievement. Instructional materials include opportunities for all			
	students that encourage and support critical and			
25	creative thinking, inquiry, and complex problem-solving			
	skills.			
FOCUS A	REA 6: CULTURAL AND LINGUISTIC PERSPECTIVES			
Instruction	onal materials represent a variety of cultural and linguisti	c perspecti	ves.	
	Instructional materials inform culturally and linguistically			
26	responsive pedagogy by affirming students' backgrounds			
	in the materials themselves and in the student			
	discussions.			
	Instructional materials provide a collection of images,			
27	stories, and information, representing a broad range of demographic groups, and do not make generalizations			
	or reinforce stereotypes.			
	Instructional materials provide context, illustrations, and			
	activities for students to make interdisciplinary			
28	connections and/or connections to real-life experiences			
	and diverse cultural and linguistic backgrounds.			
FOCUS A	REA 7: INCLUSION OF CULTURALLY AND LINGUISTICALLY F	RESPONSIV	E LENS	
Instruction	onal materials highlight diversity in culture and language	through m	ultiple perspectives.	

29	Instructional materials include tools and resources to relate the content area appropriately to diversity in		
	culture and language.		
30	Instructional materials include tools and resources that		
	demonstrate multiple perspectives in a specific concept.		
	Instructional materials engage students in critical		
31	reflection about their own lives and societies, including		
	cultures past and present in New Mexico.		
	Instructional materials address multiple ethnic		
32	descriptions, interpretations, or perspectives of events		
	and experiences.		

Stand	Standards for Mathematical Practice				
1	Make sense of problems and persevere in solving them.				
2	Reason abstractly and quantitatively.				
3	Construct viable arguments and critique the reasoning of others.				
4	Model with mathematics.				
5	Use appropriate tools strategically.				
6	Attend to precision.				
7	Look for and make use of structure.				
8	Look for and express regularity in repeated reasoning.				